Closing the Water Cycle Using a Constellation of Satellites

Kyle Hilburn and Frank Wentz
Remote Sensing Systems, Santa Rosa, CA, USA

2008 Spring AGU Meeting
Fort Lauderdale, Florida, USA
29 May 2008
Earth Observation with a Constellation of Radiometers

SSM/I: F13, F14, F15; TMI; AMSR-E

Remote Sensing Systems
www.remss.com
Rain Rate Intercalibration Completed

- Our new rain algorithm: **UMORA (Unified Microwave Ocean Retrieval Algorithm)** is a modification of the Wentz and Spencer (1998) approach
 - Improved beamfilling: modeling saturation and resolution dependence (removed biases among different sensors)
 - Improved rain column height: constrained to data (removed tropical biases)
 - Improved calibration: 0.05K

F13 (green), F14 (blue), F15 (purple), AMSR-E (orange), TMI (red), Global Precipitation Climatology Project (black)
Indirect Validation using Hydrological Consistency

- Global evaporation balances global precipitation (with a static, latitude-dependent adjustment to rain)
 - Average evaporation: 962 mm/year
 - Average precipitation: 951 mm/year
 - Imbalance on the order of 1%

- Trends in evaporation and precipitation have the same magnitude as trends in water vapor, in contrast with climate models
 - Evaporation trend: + 1.3 % / decade
 - Precipitation trend: + 1.5 % / decade
 - Water Vapor trend: + 1.4 % / decade

Climate prediction models predict a muted response by precipitation see Wentz et al., 2007, Science.
Increase in Heavy Rain

These are for global oceans, tropical oceans the same. Consistent with Trenberth.
The Hierarchical Context

- Evaporation (E)
- Precipitation (P)
- Water Vapor (V)

The Science paper
(one-dimension: time)

Averaging over time (~month) at a particular location we have:

$$\text{div } Q = E - P$$

Water Vapor Transport (Q) (a vector)
Water Vapor Transport Divergence (div Q)

The next step: add 2-D space
First Approach: Feature Tracking

• Water Vapor Transport
 – Initial idea: using feature tracking to deduce the transport velocity
 – Problems with non-conservation of water vapor and the optical flow aperture problem, also issues near coastlines
 – Tested using on-orbit simulation with NCEP wind and humidity
 – Monthly average transports are ok... but the divergence field lacks proper structure
Current Approach: Using Radiometer Derived Wind Vectors

• In the process of testing feature tracking, found that the surface wind vector was highly correlated with the water vapor transport vector (as would be expected)

• Ardizzone/Atlas Winds (Level 2.5)
 – Based on our radiometer wind speeds, but assigned a direction
 – A very high quality climate data record
 – Enthusiastically recommend its use!
Trajectory Analysis with Atlas Winds

Note that particle positions (determined by Atlas winds) line-up with water vapor.
Seasonal Cycle of V-Wind and Rain

using TMI UMORA rain rates and Atlas Level-2.5 TMI winds

Rain occurs where there is convergence

Color: Meridional Wind (m/s)
Contours: Rain Rate (4, 6, 8, 10 mm/hr)
going from thin to thick

TMI: 1998-2005
What goes into PMWC Product?

- **Precipitation (Rainfall + Frozen Precip)**
 - SSM/I, TMI, and AMSR-E rain rate retrievals +
 - Diurnal and other intersatellite adjustments (UMORA paper) ^
 - Rain to precip adjustment (lat/mon climo; based on GPCP) ^

- **Evaporation**
 - Reynolds SST (X,C-band only available since 1998,2002)
 - Note: need C-band for global (warm+cold) SSTs
 - SSM/I, TMI, and AMSR-E wind speed retrievals +
 - Buoy-based wind speed adjustment (Science paper) ^
 - RH, TA-TS climatologies (Science paper)

- **((Water Vapor) Transport) Divergence**
 - SSM/I, TMI, and AMSR-E water vapor retrievals +
 - SSM/I, TMI, and AMSR-E wind vectors (Atlas L2.5) ^
 - SFC to WVT adjustment (climatology, based on NCEP)

+ RSS Product
^ Based on RSS Product
SFC to WVT Adjustment

\[\tilde{T} = \frac{\tilde{Q}_{WVT}}{V} = \frac{\int_0^{p_s} \tilde{W} q \frac{dp}{g}}{V} \]

\[V = \int_0^{p_s} q \frac{dp}{g} \]

Note: also use variational minimization for adjustment

Using simple latitude-dependent climatological adjustment for speed and direction based on NCEP

Anticyclonic turning with height

Surface wind vector

sea surface

Surface wind vector

WVT Vector

WAA: Veering

CAA: Backing

specific humidity

Wind Vectors
High Latitude GPCP-UMORA Differences Are Seasonal

GPCP / UMORA rain rate ratio for 1988-2005

Note that UMORA is much lower than GPCP in the winter hemisphere. The patterns are similar to Petty (1995) snow observations.
PMWC vs Liu Products

• **PMWC (Passive Microwave Water Cycle) Product**
 – Ocean only, whole globe
 – 0.25 deg, Monthly resolution
 – Available from July 1987 – December 2006
 – WVT-U, WVT-V, WVT-Div, Evap, Precip, Vapor

• **Liu Transport Product**
 – Ocean only, -30 to +30 N
 – 0.5 deg, Daily resolution
 – Available from July 1999 – December 2005
 – WVT-U, WVT-V
New PMWC V01a Dataset

- Discussion on Google Groups
- Based on collaboration with Pete Robertson
- Wentz et al (2007) wind speed adjustment
 - Based on buoys
 - Magnitudes less than 0.1 m/s
- No net effect on trend
Water Vapor Transport
All comparisons 2000-2005

P M W C

L i u

P M W C – L i u
Water Vapor Transport

WVT Speed

WVT Direction

Liu

PMWC

PMWC
Water Vapor Transport Divergence

PMWC

Evap - Precip

Evap - Precip

WVT Div

Liu

Evap - Precip

Evap - Precip

WVT Div
Precipitation Implied by Hydrological Balance

Zonal Average
2000–2005

Precipitation
Rain Rate
PMWC (Evap – WVTD)
Liu (Evap–WVTD)
Vapor and Wind Trends

Black line: SST trend

Vapor Trend:
- zonal average structure like SST

Wind Trend:
- latitude dependent structure different than SST

Correlation Calculations:

\[
\frac{d(SST)}{d(Vapor)}: \quad \text{Correlation: } R = 0.94
\]

Vapor trend:
- zonal average structure like SST

\[
\frac{d(SST)}{d(Wind)}: \quad \text{Correlation: } R = -0.28
\]

Wind Speed
- latitude dependent structure different than SST
Transport Trends

Black line: transport trend

Zonal Vapor Transport

Meridional Vapor Transport

(Vapor Trend Contribution) \times (Mean vapor) = (Trend in vapor transport)
Conclusions

• Intercalibration of rain rates completed
 – *JAMC* paper describes rain algorithm changes
 – Used in *Science* paper; found precipitation trends in balance with evaporation trends, but in conflict with climate models

• PMWC product available
 – Monitoring WVT with a constellation of satellites
 – Available from Kyle (hilburn@remss.com) and CREW FTP
 – PMWC and Liu transports are similar, but have some important differences
 – PMWC and Liu divergence values are different, PMWC product balances better

• Thoughts about the water cycle
 – Balancing E, P, and WVT Div is much like the vertical velocity estimation problem in meteorology
 – The 2-dim (i.e., regional) water cycle is apparently more sensitive than widely appreciated