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Abstract 1 

This study quantifies mean annual and monthly fluxes of Earth’s water cycle over 2 

continents and ocean basins during the first decade of the millennium.  To the extent possible, 3 

the flux estimates are based on satellite measurements first and data-integrating models second.  4 

A careful accounting of uncertainty in the estimates is included.  It is applied within a routine 5 

that enforces multiple water and energy budget constraints simultaneously in a variational 6 

framework, in order to produce objectively-determined, optimized flux estimates.  In the 7 

majority of cases, the observed annual, surface and atmospheric water budgets over the 8 

continents and oceans close with much less than 10% residual.  Observed residuals and 9 

optimized uncertainty estimates are considerably larger for monthly surface and atmospheric 10 

water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and 11 

neighboring islands, and the Arctic and South Atlantic Oceans.  The residuals in South America 12 

and Africa tend to be smaller, possibly because cold land processes are a non-issue.  Fluxes were 13 

poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and 14 

Indonesian Islands, leading to reliance on atmospheric analysis estimates.   15 

Many of the satellite systems that contributed data have been or will soon be replaced.  16 

Observation integrating models will be critical for ameliorating gaps and discontinuities in the 17 

data records caused by these transitions.  Continued development of such models is essential for 18 

maximizing the value of remote sensing observations.  Next generation observing systems are 19 

the best hope for significantly improving global water budget accounting.   20 

 21 

  22 
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1.  Introduction 23 

 The most noticeable consequences of climate change will be impacts on the water cycle - 24 

water's journey through ocean, atmosphere, land, and back again - whose vagaries determine the 25 

distribution of humanity, agriculture, and all life on land, and also control circulation of the 26 

oceans and atmosphere.  A robust, global inventory of current hydrologic flux rates is essential to 27 

the assessment and prediction of climate change.  This hydrologic article and its energetic 28 

companion (L'Ecuyer et al., this issue) attempt to quantify the current state of the water and 29 

energy cycles, which is an important first step towards the NASA Energy and Water Cycle Study 30 

(NEWS) program goal of evaluating water and energy cycle consequences of climate change 31 

(NSIT, 2007).  That is, in order to identify change, one must first establish the present condition.  32 

Our analysis also begins to address a grand challenge of the National Research Council's 33 

Decadal Survey in Earth Sciences, "to integrate in situ and space-borne observations to quantify 34 

the key water-cycle state variables and fluxes" towards identifying "large-scale and persistent 35 

shifts in precipitation and water availability" (NRC, 2007).  This state of the water cycle 36 

assessment will serve as a baseline for hydroclimatic variability studies and climate change 37 

predictions and as a standard for Earth system model evaluations.  By providing a rigorous 38 

accounting of errors, it also benchmarks the state of quantitative understanding of the water cycle 39 

and reveals the extent to which the water budget can be closed over multiple regions and 40 

timeframes given current observational capabilities. 41 

 Scores of global water cycle analyses have been performed over the past century, but 42 

several aspects make this one unique.  First, it focuses on conditions during roughly the first 43 

decade of the 21st century, while previous analyses have made use of earlier data records and 44 

often stopped near the turn of century.  Second, it makes use of the most modern data products, 45 
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integrating data from satellite remote sensing as well as conventional observing systems.  The 46 

2000s have been rich with remotely sensed Earth observations that are relevant to the water and 47 

energy cycles.  Third, rigorous assessments of uncertainty in the data products were supplied by 48 

the diverse group of data providers who compose the study team, and were examined and refined 49 

during the analysis.  Fourth, an optimization algorithm was employed to compute the final water 50 

flux estimates, making use of the uncertainty assessments and constraining water balance on 51 

multiple scales: monthly, annual, continental, ocean basin, and global.  Finally, the water and 52 

energy budgets were used to constrain each other through the equivalency of the 53 

evapotranspiration and latent heat flux terms, thus ensuring consistency between the two 54 

analyses.   55 

 In the following sections we describe the present state of knowledge of the global water 56 

cycle and results of this new analysis. Section 2 summarizes advances made by previous studies.  57 

Sections 3 and 4 detail the datasets and methods used herein.  Section 5 presents water cycle 58 

fluxes during approximately 2000-2010, as monthly and annual means over six continents and 59 

nine ocean basins, as well as the global ocean and global land.  Section 6 discusses implications 60 

and limitations of the results, and recommends future work. 61 

 62 

2.  Background  63 

Characterizing the stocks and fluxes of Earth’s global water budget has posed 64 

considerable challenges through the decades. In spite of the importance of water to humanity, 65 

ecology, and environment, a comprehensive global hydrological observing system for 66 

monitoring the storage and movement of Earth’s water does not exist.  Consequently, the earliest 67 

compilations (e.g., Bruckner, 1905; Nace, 1969; Korzoun, 1974) relied on limited observations 68 
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to estimate globally-averaged fluxes of precipitation and evapotranspiration.  Results varied 69 

widely (see, e.g., Schlosser and Houser, 2007) and have not enabled water budget closure 70 

(Chahine, 1992).  Moreover, global water stocks such as groundwater were estimated using ad 71 

hoc assumptions for land properties, for example, aquifer thickness and porosity (Nace, 1964; 72 

Korzoun, 1974), yielding only first-order approximations of the magnitude of this and other 73 

critical reservoirs.   Although such estimates should be used with caution, they have nevertheless 74 

been propagated in the literature, and continue to appear in modern global hydrological budgets 75 

and assessments (e.g. Shiklomonov, 1993; Oki and Kanae, 2006; Trenberth et al., 2007; 2011).  76 

L’vovitch (1974), Baumgartner and Reichel (1975), Berner and Berner (1987) and others 77 

continued and updated global compilations, producing global maps as well as globally-averaged 78 

fluxes. Sparse ground-based data and simple water budget analyses were used to estimate spatial 79 

patterns of precipitation and evapotranspiration respectively. Because long-term measurements 80 

of river discharge are also limited in availability (Alsdorf et al., 2007), it is generally estimated 81 

as the difference of precipitation minus evapotranspiration in the above-mentioned studies, based 82 

on assumptions of negligible long-term net water storage change.  Given current capabilities to 83 

observe terrestrial water storage changes using the NASA Gravity Recovery and Climate 84 

Experiment (GRACE) mission (Tapley et al., 2004; Wahr et al., 2004), such an assumption is no 85 

longer required, nor is it necessarily valid (Rodell et al., 2004a; Syed et al., 2010).  86 

The evolution of the representation of the land surface in climate models (Dickinson et 87 

al., 1984; Sellers et al., 1986), and of large-scale hydrological models (Vörösmarty et al., 1989; 88 

Dirmeyer et al., 2006), has fostered a new generation of global water budget studies that 89 

supplement traditionally sparse hydrologic observations with global model output.  Model output 90 

may itself be calibrated to (e.g., Dai et al., 2009), or otherwise constrained by observations (e.g. 91 
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Fekete et al., 2002), or may incorporate observations as input (e.g., Mitchell et al., 2004) or via 92 

data assimilation (e.g., Kumar et al., 2008).  In lieu of sufficiently-dense hydrological observing 93 

networks, combined model-observational global budgets offer a physically-based alternative for 94 

producing well-constrained global water budgets.  Oki and Kanae (2006), Trenberth et al. 95 

(2007), and Schlosser and Houser (2007) all provide recent examples. 96 

Chahine (1992) ushered in the modern era of global water budget analyses, by providing 97 

insight that continues to help define the current research agenda.  For example, Chahine (1992) 98 

was the first to articulate that water vapor, clouds and radiation, and sea surface fluxes are all 99 

major branches of the global water cycle, along with precipitation and terrestrial hydrology.  100 

Further, Chahine (1992) highlighted current inabilities to close the global water budget, and 101 

speculated that satellite remote sensing and integrative programs like the Global Energy and 102 

Water Cycle Experiment (GEWEX) may ultimately play a critical role in alleviating current 103 

shortcomings. 104 

Clearly, both GEWEX and satellite remote sensing are contributing to global water 105 

budget analyses, as anticipated by Chahine (1992).  Key contributions from the GEWEX 106 

program include the development of important research datasets (for example, the Global 107 

Precipitation Climatology Project [GPCP] for combining gauge and satellite based data to 108 

estimate global precipitation patterns; Huffman et al., 1997); the development of focused water 109 

cycle research questions to encourage community research; and integrative observing and 110 

modeling activities (GEWEX, 2012a,b).  Meanwhile, the NEWS program has fostered the 111 

development of several satellite-based global hydrological datasets and combined model-satellite 112 

products, which contribute to the present study (see Section 3).   113 
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While tremendous progress has been made in global water budget analyses in recent 114 

years, several important issues remain unresolved.   Differences among flux datasets still pose 115 

challenges for water budget closure, and by extension, for energy budget closure as well.  116 

Several key hydrologic stores and fluxes remain poorly measured in many regions of the world, 117 

for example, groundwater and surface water storage (Famiglietti and Rodell, 2013).  The 118 

development of data assimilating modeling systems like the Land Information System (Kumar et 119 

al., 2008) are progressing rapidly, but they are not yet able to ingest, simultaneously, the full 120 

suite of data from water cycle observing satellites, including observations of surface waters, soil 121 

moisture, snow and vegetation properties, and terrestrial water storage. 122 

The study described here addresses some of the aforementioned problems and leaves 123 

others for future work.  By using predominantly satellite-derived datasets, data scarcity and 124 

accessibility issues are circumvented. By incorporating GRACE data on terrestrial or ocean 125 

water storage changes, water balance can be achieved at multiple scales (Rodell et al., 2004a; 126 

Syed et al., 2010).  When model output is included in the analyses, it has been constrained by in 127 

situ or remote observations. In short, to our knowledge, the work presented here represents the 128 

most consistent, observation-based analysis of the global water budget that has been reported to 129 

date. 130 

 131 

3. Data 132 

 The scales of this research are continental and major sea/ocean basin to global, and mean 133 

monthly to mean annual, during the period 2000-2010, though in some cases it was necessary to 134 

use data from as far back as 1998.  Observation-integrating data products are favored, 135 

particularly those that incorporate satellite based measurements (Table 1).  These criteria 136 
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disqualify many of the datasets that are commonly used in hydroclimatological analyses.  137 

Further, we give preference to datasets provided by members of the NEWS team, which are 138 

generally the most modern available, over outside alternatives, because that ensures detailed 139 

understanding and well-vetted uncertainty assessments.  While alternative datasets of similar 140 

quality certainly exist, we contend that none could definitively be described as better.  In some 141 

cases, flux estimates from multiple sources are combined.  In other cases, only one dataset is 142 

available, or one is chosen based on acceptance in the community as the standard.  We are not 143 

anointing any of the chosen datasets as "best" and our choices should not be interpreted as a 144 

dismissal of others.  Rather, the associated errors speak to the quality of each dataset, and it will 145 

be shown that the results of the water balance optimization suggest that both the choices of 146 

datasets and the associated error estimates are appropriate. 147 

 148 

a. Precipitation 149 

 The Global Precipitation Climatology Project (GPCP) monthly Satellite-Gauge 150 

precipitation analysis (Adler et al., 2003; Huffman, et al., 2009), version 2.2, is the exclusive 151 

precipitation dataset used herein.  It is a globally complete, monthly estimate of surface 152 

precipitation at 2.5° x 2.5° latitude–longitude resolution that begins in 1979, though this study 153 

made use of the period January 2001 to December 2010.  The product employs precipitation 154 

estimates from the 6:00 am and 6:00 pm (local time) low-orbit satellite Special Sensor 155 

Microwave/Imager (SSMI) and Special Sensor Microwave/Imager and Sounder (SSMIS) 156 

microwave data to perform a calibration, that varies by month and  location, of Geostationary 157 

Operational Environmental Satellite (GOES) infrared (IR) data in the latitude band 40°N-S. At 158 

higher latitudes, estimates based on Television Infrared Observation Satellite (TIROS) 159 
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Operational Vertical Sounder (TOVS) or Atmospheric Infrared Sounder (AIRS), calibrated by 160 

gauges over land and microwave estimates over ocean at lower latitudes, are combined with the 161 

SSMI and SSMIS microwave estimates to provide globally complete and homogeneous satellite-162 

only precipitation estimates.  These multi-satellite estimates are combined with rain-gauge 163 

analyses (over land) in a two-step process that adjusts the satellite estimates to the large-scale 164 

bias of the gauges and then combines the adjusted satellite and gauge fields with weighting by 165 

inverse error variance.  Absolute magnitudes are considered reliable and inter-annual changes are 166 

robust.  Precipitation may be underestimated in mountainous areas, although version 2.2 is 167 

improved in this regard over previous versions.  Regional and global bias errors in the GPCP 168 

climatology have been estimated using data from other satellites, including the Tropical Rainfall 169 

Measuring Mission (TRMM), following Adler et al. (2012). 170 

 171 

b. Ocean Evaporation 172 

 SeaFlux version 1.0 (Clayson et al., 2014) is our exclusive source of ocean evaporation 173 

data.  SeaFlux is a satellite-derived surface turbulent flux dataset currently produced at 0.25° 174 

spatial resolution and 3-hourly temporal resolution. While many other satellite based products 175 

are produced at coarser resolution through binning, averaging, and statistical interpolation, 176 

SeaFlux attempts to utilize the high-resolution nature of the satellite data.  It includes a sea 177 

surface temperature dataset with diurnal warming specifically included (Clayson et al., 2014). 178 

The bulk atmospheric parameters of temperature and humidity are provided by SSMI retrievals 179 

using a newly-developed neural net algorithm (Roberts et al. 2010). This retrieval method 180 

reduces both mean biases in comparisons with in situ data and also systematic errors at 181 

extremely low and high humidity. Air temperature retrievals using this method have shown the 182 
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greatest increase in accuracy compared to other products, with biases now under 0.25º C across 183 

the spectrum of air-sea temperature differences. Winds are provided by the Cross-Calibrated 184 

Multi-Platform (CCMP) level 2.5 gridded swath product. A novel interpolation method based on 185 

the use of the temporal evolution of a model-reanalysis (for SeaFlux v.1, NASA’s Modern Era 186 

Retrospective-analysis for Research and Applications [MERRA; see section 3.3b] is the 187 

reanalysis used as the basis) has been implemented. This reanalysis-based interpolation uses the 188 

time tendencies from a high-resolution model analysis but is driven through the satellite 189 

observations in a smooth manner. The interpolation algorithm selectively takes the physically-190 

calculated time tendencies from the model results to interpolate the missing data points at a 3 191 

hourly resolution. A neural network emulation of the Coupled Ocean-Atmosphere Response 192 

Experiment (COARE) 3.0 algorithm (Fairall et al., 2003) has been developed as a 193 

computationally inexpensive forward model to calculate the surface turbulent fluxes from the 194 

input bulk variables. The version of the SeaFlux product used here covers 1998-2007 and 195 

integrates the Colorado State University SSMI calibrated brightness temperature dataset (C. 196 

Kummerow, personal communication, 2011). 197 

 198 

c.  Terrestrial Evapotranspiration 199 

 Estimating evapotranspiration (ET) at large scales is challenging because ET is highly variable 200 

in space and time, and weighing lysimeters, which are the gold standard, are difficult and expensive to 201 

install and maintain.  More commonly, ground based observation is accomplished using eddy 202 

covariance measurements.  While satellite retrieval algorithms do exist, their accuracy is limited by the 203 

sparseness of in situ observations available for calibration and validation, which themselves may be 204 

unrepresentative of 500 m and larger scale satellite footprints and grid pixels.  Other alternatives 205 
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include physically based and empirical models of land surface processes, which are limited in accuracy 206 

by the quality of the input data and the simplifications inherent to numerical models, and river basin 207 

scale water budget analysis (e.g., Rodell et al., 2004a), which requires river discharge data and is best 208 

suited for large river basins. 209 

 Due to these challenges and the resulting uncertainty in any one technique, ET estimates from 210 

three sources are averaged to produce the values used herein.  Total uncertainty (bias and random 211 

errors) in the averaged values is estimated as the standard deviation of the three estimates for each 212 

region and time period.  The three sources are Princeton University's remote sensing-informed 213 

Penman-Monteith scheme and NASA’s MERRA and Global Land Data Assimilation System 214 

(GLDAS).   215 

 216 

1)  Princeton Remote Sensing Based ET 217 

 Princeton's model for global ET estimation (Vinukollu et al., 2011) is based on the Penman–218 

Monteith approach (Monteith, 1965).  All model inputs and forcings, with the exception of wind and 219 

surface pressure, are derived from satellite remote sensors including AIRS, the Moderate Resolution 220 

Imaging Spectroradiometer (MODIS), the Clouds and the Earth's Radiant Energy System 221 

(CERES), and the Advanced Very High Resolution Radiometer (AVHRR).  Surface resistance is 222 

adjusted and ecophysiological constraints are applied to account for changing environmental factors.  223 

Evaporation and sublimation over snow-covered regions is calculated using a modified Penman 224 

equation.  Instantaneous fluxes of latent heat computed at the time of satellite overpass are linearly 225 

scaled to the equivalent daily evapotranspiration using the computed evaporative fraction and the day-226 

time net radiation.  A constant fraction (10% of daytime evaporation) is used to account for the night-227 

time evaporation.  Interception losses are computed using a simple water budget model.  Satellite-based 228 
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inputs and model outputs are first carefully evaluated at the site scale on a monthly-mean basis, then as 229 

a multi-year mean against a climatological estimate of ET over 26 major basins, and finally in terms of 230 

a latitudinal profile on an annual basis.  Input meteorology and resulting latent and sensible heat fluxes 231 

have been evaluated against eddy-covariance tower data across the U.S.  These exercises revealed good 232 

correlations with the in situ data and proper representation of seasonal cycles and major droughts.   233 

 234 

2)  MERRA 235 

 MERRA (Rienecker et al. 2011) has reanalyzed the recent satellite era (1979-present) 236 

utilizing a significant portion of the available in situ and satellite data records, including those 237 

from GOES and European Remote Sensing Satellites 1 & 2 (ERS1/2) instruments, AIRS, SSMI, 238 

MODIS, Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU), 239 

Stratospheric Sounding Unit (SSU), High resolution Infrared Radiation Sounder (HIRS), and 240 

Quick Scatterometer (QuikSCAT).  NASA’s Goddard Earth Observing System Model, Version 5 241 

(GEOS-5; Rienecker et al., 2008) is the model basis.  MERRA water and energy budget data are 242 

reported hourly on a nominal 0.5° grid.  In the development of the output diagnostics, special 243 

care was taken to include all the budget terms so that budget closure could be achieved. Of 244 

course, like all reanalyses, the observational analysis exerts significant influence on the physics 245 

budgets (e.g., Roads et al. 2002) which leads to imbalances in the physical terms of the budget.  246 

In MERRA, this influence is computed from the data assimilation and provided as a tendency 247 

term (called the analysis increment) in the budget equation, so that it does not need to be derived 248 

from residuals.  The analysis increments generally reflect the long term bias present in the 249 

background model.  In this study, we use MERRA data that are averaged over 1998-2009.  We 250 

have corrected the precipitation, evapotranspiration, and runoff fields to account for the analysis 251 
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increments, using regression equations based on Bosilovich and Schubert (2001).  Bosilovich et 252 

al. (2011) discuss the strengths and weaknesses of the MERRA global water and energy budgets, 253 

including the interrelationships of the physical terms with the analysis increment.  Despite the 254 

strengths and utility of the MERRA dataset, Trenberth et al. (2011) caution that there are land 255 

regions over which atmospheric convergence is negative.  Further, the satellite data assimilated 256 

by MERRA (Table 1) have only an indirect influence on ET through their effects on air 257 

temperature, specific humidity, and wind velocity. 258 

 A supplemental land surface reanalysis, MERRA-Land, provides enhanced land surface 259 

hydrology estimates based on a land-only GEOS-5 simulation (Reichle et al., 2011; Reichle, 260 

2012).  Compared with MERRA, MERRA-Land claims two advantages.  First, the version of the 261 

land surface model within GEOS-5 has been updated from that used in MERRA.  Second, 262 

precipitation forcing fields from MERRA are corrected with the global, gauge-based NOAA 263 

Climate Prediction Center "Unified" (CPCU) precipitation product (Chen et al., 2008).  In this 264 

analysis, the mean of MERRA and MERRA-Land ET is used as the “MERRA ET estimate”, 265 

which is subsequently averaged together with the Princeton and GLDAS ET estimates. 266 

 267 

3)  GLDAS 268 

 GLDAS (Rodell et al., 2004b) is a quasi-operational implementation of the Land 269 

Information System software (Kumar et al., 2008), which drives multiple land surface models 270 

(LSMs) and offers numerous options of input parameter and meteorological forcing datasets, 271 

spatial scales, and other functionalities.  The goal of GLDAS is to generate optimal fields of land 272 

surface states (e.g., soil moisture, temperature) and fluxes (e.g., evapotranspiration, runoff) by 273 

integrating satellite- and ground-based observational data products within a suite of LSMs.  The 274 
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GLDAS output fields have been evaluated in a variety of studies through comparison with 275 

observations and other model products, and in general they compare favorably, particularly when 276 

the multi-model GLDAS mean is used (Kato et al., 2007; Syed et al., 2008; Zaitchik et al., 2010; 277 

Jimenez et al., 2011; Mueller et al., 2011; Wang et al., 2011).  This study utilizes 1.0° resolution 278 

output from GLDAS instances of the Noah (Chen et al., 1996; Ek et al., 2003; Koren et al., 279 

1999), Community Land Model (CLM) version 2 (Bonan et al., 2002), Variable Infiltration 280 

Capacity (VIC; Liang et al., 1994), and Mosaic (Koster and Suarez, 1996) LSMs.  The models 281 

were forced with a combination of meteorological fields (air temperature, humidity, wind speed, 282 

and surface pressure) from the National Centers for Environmental Prediction (NCEP) Global 283 

Data Assimilation System product, precipitation fields from the GPCP One-Degree Daily (1DD) 284 

product version 1.1 (Huffman et al., 2001), and downward shortwave and longwave radiation 285 

fields derived from Air Force Weather Agency cloud analyses using the schemes of Shapiro 286 

(1987), Idso (1981), and Wachtmann (1975).  The GPCP 1DD data were downscaled to 3-hourly 287 

resolution by bias correcting precipitation fields from MERRA for 1998-1999 and from GDAS 288 

for 2000-2009.  All four models were parameterized with land cover data from the University of 289 

Maryland (Hansen et al., 2000), soils data from Reynolds et al. (2000), and the GTOPO30 digital 290 

elevation model (available from 291 

http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info).  The GLDAS 292 

simulations were previously spun up from 1979 and were executed on 15-minute time steps 293 

(except for VIC, whose time step is 1-hour).  A GLDAS climatology is constructed by averaging 294 

the four models over the period 1998-2008 (due to the current unavailability of GPCP 1DD data 295 

after mid-2009) to produce monthly means.  Inland water bodies (e.g., the Great Lakes) and ice 296 
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sheets (Greenland and Antarctica) not modeled by GLDAS are filled with MERRA data in order 297 

to conform to the continental delineation defined for this study.  298 

 299 

d.  Continental Runoff 300 

 Clark et al. (2014) estimated river runoff using a method, similar to that of Dai et al. 301 

(2009), that combined gauged streamflow from 839 near-coast gauging stations and simulated 302 

runoff from two implementations of the VIC model. The first VIC simulation (SHEFF), for the 303 

period of 1949-2008, was performed at 1° resolution in full energy balance mode (energy 304 

balance calculations performed at each hourly time step) forced with the surface meteorological 305 

inputs of Sheffield et al. (2009).  The second (WATCH), from 1959-2001, was run at 0.5° 306 

resolution in VIC water balance mode (energy budget balanced daily) forced with surface 307 

meteorological inputs from the European Union's Water and Global Change programme (EU-308 

WATCH; Weedon et al., 2011).  Simulated gauge and river mouth streamflow was calculated by 309 

routing these runoff values through the STN-30p v6.01 flow network (Vörösmarty et al., 2000).  310 

Gaps in the gauge records were filled through linear regression of monthly or annual gauged 311 

streamflow against simulated streamflow. Gauged flows were extrapolated at monthly and 312 

annual time steps to river mouths based on the ratio of simulated runoff at the mouth to 313 

simulated runoff at the station. Flows at the mouths of completely ungauged rivers were 314 

estimated by multiplying simulated flow at that river mouth with the ratio of observed to 315 

simulated flows for all gauged rivers within +/-2° latitude of that mouth. The latitude bands 316 

included either all stations +/-2° latitude on the same continent (CONT) or draining to the same 317 

ocean (OCN). 318 
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The annual and monthly runoff estimates used here are the average of SHEFF-CONT and 319 

SHEFF-OCN from 1999-2008. Because this approach assumes that the model performance is 320 

regionally consistent and that some of the residual errors are averaged out in the aggregate, 321 

neither of which can be easily tested with existing data, we estimated errors based on multiple 322 

data sets. Errors in annual and monthly runoff are estimated as the standard deviation of 323 

estimates from the SHEFF-CONT (1998-2008), SHEFF-OCN (1998-2008), WATCH-CONT 324 

(1960-2001), WATCH-OCN (1960-2001), Dai et al. (2009)’s estimate (1998-2004), GLDAS 325 

simulated runoff, and MERRA simulated runoff.  326 

Over Greenland and Antarctica, observations of runoff (which consists primarily of ice 327 

flows) are not available.  Therefore monthly runoff is computed as a water budget residual. 328 

 In order to account for total continental runoff, submarine groundwater discharge (SGD) 329 

must be added to river runoff.  Many localized estimates of SGD are available, but these are not 330 

easily scaled up, and directly comparable continental SGD estimates have not been published, to 331 

our knowledge.  Korzun (1974) estimated global SGD to be 2,200 km3/yr, while Zektser et al. 332 

(2006) estimated 2,200-2,400 km3/yr.  Here we take the midpoint of the latter range, 2,300 333 

km3/yr, and distribute it among the continents by assuming that SGD is proportional to both 334 

surface runoff and coastline length.  The “coastline paradox” is the observation that, due to the 335 

fractal nature of coastline features, estimated coastline length increases with the precision of 336 

one’s measurements (Mandelbrot, 1983).  Because we are concerned only with the relative 337 

lengths of continental coastlines at macro scales, and because small-scale features such as fjords 338 

are unlikely to increase large-scale SGD relative to that of a flat coastline, we estimate 339 

continental coastline length based on a 0.25° resolution gridded map (Table 2).  We then use the 340 

product of continental coastline length and mean annual continental river runoff to weight the 341 
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distribution of the 2,300 km3/yr SGD among the continents.  Monthly SGD is computed by 342 

assuming it is directly proportional to monthly river runoff, and the results are added to the 343 

monthly river runoff values to estimate total monthly, continental runoff.  Despite the vast 344 

majority of Antarctic surface runoff being frozen, in the form of glacier calving into the ocean, 345 

Antarctic SGD has indeed been measured (Uemura et al., 2011), explained by the combination of 346 

geothermal heating and pressure which produces liquid water lakes beneath the ice sheet. Owing 347 

to the scarcity of large scale SGD estimates and our reliance on several simplifying assumptions, 348 

uncertainty in our estimates is conservatively computed as 50% of SGD itself. 349 

 350 

e.  Atmospheric Convergence 351 

 Atmospheric convergence data are taken from three sources.  The first is MERRA, which 352 

has full global coverage.  The second source is a water vapor transport product developed by Liu 353 

et al. (2006).  It is based on an accounting of moisture fluxes over the continental margins 354 

derived from QuikSCAT data, constrained by rainfall from TRMM, terrestrial water storage 355 

changes from GRACE, and climatological river discharge.  This product is available on a 356 

monthly basis over the major ocean basins, but over land it is limited to two continents, North 357 

and South America, as annual averages.  The third source is the Passive Microwave Water Cycle 358 

(PMWC) dataset (Hilburn, 2009).  PMWC version 2.0 was constructed using retrievals of wind 359 

speed, water vapor, and rain rate from Remote Sensing Systems (RSS) intercalibrated data 360 

record of the Advanced Microwave Scanning Radiometer for EOS (AMSR-E; Kawanishi et al., 361 

2003), AMSR2, SSMI, SSMIS, TRMM Microwave Imager (TMI), and WindSat.  PMWC 362 

derives water vapor transport from the satellite water vapor data using MERRA to specify the 363 

effective transport velocity.  PMWC estimates are only available over the major ocean basins.  364 
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Over the ocean basins all three products are combined by simple averaging.  For the North and 365 

South American annual means, the MERRA and the QuikSCAT estimates are averaged.  For the 366 

monthly means and for all other continents MERRA alone is used due to large uncertainties in 367 

the QuikSCAT estimates.  In cases where multiple estimates are available, monthly and annual 368 

errors are estimated as the standard deviation of the available estimates, but not less than 3 369 

mm/month.  In cases where only the MERRA estimate is available (the Arctic Ocean, the 370 

Caribbean, Mediterranean, and Black Seas, and continents other than the Americas), the error is 371 

fixed at 19% (the error percentage computed for South American annual convergence) or 3 372 

mm/month, whichever is larger. 373 

 374 

f.  Terrestrial and Oceanic Water Storage Changes 375 

 Monthly changes in terrestrial water storage (TWS) for each continent and the global 376 

ocean have been derived from GRACE satellite observations of Earth's time-varying gravity 377 

field (Tapley et al., 2004).  The gravity coefficients used here are from the University of Texas 378 

Center for Space Research's Release-05 product (Bettadpur, 2012), for 2003 to 2012.  They were 379 

processed with standard corrections to account for the degree 2, order 0 coefficients, geocenter 380 

motion, and glacial isostatic adjustment (Chambers and Schröter, 2011; Chambers and Bonin, 381 

2012).  Average continental water storage was computed using the method of averaging kernels 382 

convolved with the GRACE coefficients, with results scaled based on convolutions with 383 

simulated data in order to restore power of the signal reduced by the resolution of GRACE 384 

(Swenson and Wahr, 2002).  The kernels and scaling factors for the continents have previously 385 

been described and tested (Chambers, 2009; Johnson and Chambers, 2013).  Formal GRACE 386 

“instrument errors” account for random GRACE errors, gravity signals outside the area of 387 
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interest leaking into the estimate, and the variance of intra-annual variations.  TWS as observed 388 

by GRACE comprises all water in and on the land, including groundwater, soil moisture, surface 389 

water, snow and ice, and biological water.  This definition is precisely appropriate for the 390 

terrestrial water budget equation (see section 4.3).  However, GRACE provides monthly mean 391 

anomalies of TWS, which cannot be used directly to compute the change in TWS between the 392 

start and the end of a given month as required by the standard terrestrial water budget (equation 6 393 

in section 4.3; see Rodell et al., 2004a).  Thus daily TWS changes are estimated here by linearly 394 

interpolating the GRACE data and then applying a scale factor so that the interpolated daily 395 

values approximately average to the observed monthly values.  Changes in TWS between the 396 

first days of adjacent months are then computed.   397 

Monthly changes in world ocean water volume have likewise been estimated based on 398 

GRACE data (Johnson and Chambers, 2013).  Changes in water volumes of individual ocean 399 

basins are not included in the analysis owing to a lack of ocean transport data to balance the 400 

ocean basin water budget.  Total uncertainty in the GRACE-based TWS changes for each 401 

continent and the global ocean is estimated as the root sum square of three error components: 402 

formal instrument errors, atmospheric errors, and leakage errors.  That result is then multiplied 403 

by the square root of two in order to account for uncorrelated errors in the two consecutive 404 

months used to compute a change (Wahr et al., 1998; Rodell and Famiglietti, 1999; Landerer and 405 

Swenson, 2012). 406 

 407 

g.  Total Precipitable Water Vapor 408 

 Total precipitable water vapor have been derived from AIRS and AMSR-E observations 409 

from the NASA Aqua satellite.  The AIRS spectral resolution is 100 times greater than previous 410 
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infrared sounders, revealing detailed three-dimensional global distribution of water vapor (e.g. 411 

Gordon et al., 2014; Tian et al., 2013). The AIRS water vapor is based on a physical relaxation 412 

algorithm (Susskind et al., 2011).  AMSR-E is a twelve-channel, six-frequency, passive 413 

microwave radiometer system, which can provide precipitable water vapor measurements over 414 

water only, where low surface emissivity provides a low temperature background for retrieval of 415 

atmospheric properties.  The AMSR-E retrieval uses a regression against operational 416 

radiosondes, with updated validation against a separate subset of radiosondes (Wentz and 417 

Meissner, 2000). 418 

AMSR-E total water vapor data have negligible biases and RMS differences of about 6% 419 

absolute compared with radiosondes (Szczodrak et al., 2006; see Fetzer et al., 2006 for a 420 

discussion).  The AIRS and AMSR-E total water vapor estimates were shown by Fetzer et al. 421 

(2006) to have relative biases of 5% or less (though of undetermined sign) and RMS difference 422 

of 10% or less for clear or partly cloudy scenes, while AIRS-AMSR-E relative biases ranged 423 

from -30% (AIRS dry) to +70% for persistently cloudy conditions.   AIRS total water vapor over 424 

land and ocean has been validated against radiosondes (Tobin et al., 2006; Divakarla et al., 425 

2006), Global Positioning System receivers (Rama Varma Raja et al., 2008), and group-based 426 

radiometers (Bedka et al., 2010).  Using a seven-year surface record at three fixed sites, Bedka et 427 

al. (2010) reported monthly mean total water vapor biases of 1-3% for a wide range of weather 428 

conditions and total water vapor amounts, showing that the cloud-induced sampling in AIRS is 429 

generally small.  However, the AIRS sampling biases are largest in regions of deep convection 430 

and baroclinic activity.  The global implications of these cloud-induced biases are discussed by 431 

Tian et al. (2012; 2013), Hearty et al. (2014) and Yue et al. (2013).  AMSR-E water vapor 432 
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sampling biases are small except under heavily precipitating conditions representing 2-5% of all 433 

scenes. 434 

Here we utilize the AIRS and AMSR-E Version 5 Level 2 (vector) 3-hourly total 435 

precipitable water vapor at 1-degree from 2003 to 2007.  To compute a climatology of monthly 436 

atmospheric moisture storage changes over the continents and ocean basins, the vector data are 437 

first binned into 1° grids, and then time series of 5-day averages centered on the first day of each 438 

month are generated to achieve global coverage with minimal data gaps.  Smaller RMS 439 

uncertainties are expected for the averaged data used in this analysis because they typically 440 

represent 10 to 20 samples, each with RMS error of 10% or less.  Biases of the 5-day averages 441 

are estimated to be 5% or smaller, consistent with Bedka et al. (2010). 442 

 443 

4.  Methods 444 

a.  Data Blending 445 

 As described above, in many cases a single data source is chosen, with other sources used 446 

for corroboration.  When multiple datasets meet the criteria and selecting only one is not 447 

defensible, a single estimate of a given water budget variable is computed by averaging.  The 448 

standard deviation across the original estimates is then taken to represent the uncertainty in the 449 

blended estimate.  Typically this results in an uncertainty value that is similar to or more 450 

conservative (larger) than the original uncertainties.  Blended estimates are computed for 451 

terrestrial evapotranspiration, atmospheric convergence over the major ocean basins and North 452 

and South America, and total precipitable water vapor changes over the ocean. 453 

 454 

b.  Water Budget Equations 455 
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 This section presents the water budget equations that are applied at each spatial and 456 

temporal scale and used with the optimization approach described above.  A capital "A" in the 457 

equation number indicates that the equation only applies to the long term annual mean, assuming 458 

no climate or human induced change in the water cycle.  For any variable X (flux or change in 459 

storage with units of mass over time) over any area, the annual total must equal the sum of the 460 

monthly fluxes or changes, 461 

 462 

 XAnnual = XJanuary + XFebruary + ... + XDecember      (1) 463 

     464 

and over any time period, the worldwide total must equal the sum of the global land and global 465 

ocean fluxes or changes, 466 

 467 

 XW = XL + XO          (2) 468 

 469 

where the subscripts W, L, and O represent world, land, and ocean. 470 

 At the continental scale, the surface terrestrial water budget equation is 471 

 472 

 dSco = Pco - ETco - Qco         (3) 473 

 474 

where dS is the change in storage between to two distinct points in time, P, ET, and Q are total 475 

precipitation, evapotranspiration, and runoff in the interval, and the subscript co denotes 476 

continental.  On an annual mean basis, assuming no changes in climate or direct human impacts 477 

on water storage, dSco drops to zero, so that 478 
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 479 

 Pco - ETco = Qco         (3A) 480 

 481 

The atmospheric water budget over a continent is 482 

 483 

 dWco = Cco - Pco + ETco        (4) 484 

 485 

where dW is the change in precipitable water in the atmospheric column, and C is net 486 

atmospheric convergence.  The change in liquid water in the column, which is sometimes 487 

included on the left side of equation (4), was assumed to be negligible (Peixoto and Oort, 1992).  488 

On an annual mean basis dWco becomes zero, so that 489 

 490 

 Cco = Pco - ETco         (4A) 491 

 492 

It follows from (3) and (4) that  493 

 494 

 dSco + dWco = Cco - Qco         (5) 495 

 496 

and on an annual mean basis 497 

 498 

 Cco = Qco          (5A) 499 

 500 

 The ocean basin water budget equation is  501 



24 
 

 502 

 dSob = Pob - Eob + Qob + Tob        (6) 503 

 504 

where E is ocean evaporation, Qob is runoff from the continents into the ocean basin, and Tob is 505 

net transport of water into an ocean basin (ob).  As before, the storage term drops to zero on an 506 

annual mean basis, leaving 507 

 508 

 Eob = Pob + Qob + Tob         (6A) 509 

 510 

Because observation-based estimates of T are not available, equations (6) and (6A) are not 511 

included in the analysis.  The atmospheric water budget over an ocean basin is identical to that 512 

over a continent except that ET is replaced by E, 513 

 514 

 dWob = Cob - Pob + Eob         (7) 515 

 516 

and on a mean annual basis, 517 

 518 

 Cob = Pob - Eob          (7A) 519 

 520 

For the sake of completeness, we note that following (6) and (7), 521 

 522 

 dSob + dWob = Cob + Qob + Tob       (8) 523 

 524 
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and on a mean annual basis 525 

 526 

 Cob = -Qob - Tob         (8A) 527 

 528 

 For the global land and oceans, water storage changes must balance as 529 

 530 

 dSL + dSO = -dWL - dWO        (9) 531 

 532 

which, based on (2), is identical to  533 

 534 

 dSW = -dWW          (9b) 535 

 536 

with all of these terms dropping to zero on a mean annual basis.  The net movement of water 537 

vapor over the land is a net loss from the atmosphere over the oceans, so that 538 

 539 

 CL = -CO          (10) 540 

 541 

and CW must be zero.  Similarly, here we define  542 

 543 

 QO = QL          (11) 544 

 545 
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though some may prefer to define one as the additive inverse of the other, and adjust (6) and (8) 546 

accordingly.  The other lateral transport, T, has no meaning at the global ocean scale.  Thus, from 547 

(6), the global ocean water budget is 548 

 549 

 dSO = PO - EO + QO         (12) 550 

 551 

and for the annual mean, 552 

 553 

 EO = PO + QO          (12A) 554 

 555 

The budget equation for the global ocean-atmosphere column then follows from (8), 556 

 557 

 dSO + dWO = CO + QL         (13) 558 

 559 

Similarly, the budget for the global land-atmosphere column is unchanged from (5), 560 

 561 

 dSL + dWL = CL - QL         (14) 562 

 563 

and on an annual basis, 564 

 565 

 CL = QL          (14A) 566 

 567 

Finally, by combing equations, it can be shown that  568 
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 569 

 dSW = PW - EW         (15) 570 

 571 

and on an annual basis, 572 

 573 

 EW = PW          (15A) 574 

 575 

c. Water Budget Closure 576 

Taken individually, the observed fluxes described in the section 3 represent our best 577 

estimates of those terms, irrespective of the observational uncertainty.  On the other hand, the 578 

fluxes (and associated storage terms) are related to one another by the water budget equations 579 

described in subsection 4.2.  These budget equations therefore provide additional information 580 

that can be used to modify the observed fluxes and storage terms to obtain “optimized” fluxes 581 

and storage terms that balance all relevant budget equations while remaining consistent with the 582 

observations and their associated uncertainties.  Further, it is desirable to achieve simultaneous 583 

water and energy budget closure (via the equivalence of evapotranspiration and latent heat flux), 584 

addressing all available global and regional budget constraints.  Applying concepts from the 585 

variational data assimilation and optimal estimation retrieval communities demonstrated in 586 

L’Ecuyer and Stephens (2002), we employ a new objective approach for adjusting all component 587 

fluxes that explicitly accounts for the relative accuracies to which they are known.  The annual 588 

and monthly observational flux estimates are modified according to the optimization method that 589 

follows. 590 

 591 
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Suppose we have a set of N flux terms that are represented by 592 

 593 

ࡲ  ൌ ሺܨ�ଵ�ǡ ଶ�ǡܨ ଷ�ǡܨ ǥ ǡ ǡܨ ǥ ǡ  ே�ሻ்,       (16)  594ܨ

 595 

(T denotes transpose, i.e., F is a column vector) and that these fluxes are related to storage terms 596 

by budget equations that can be written, in general, 597 

 598 

�ࡾ  ൌ  599 (17)          ,�ࡲ���

 600 

where R is the vector of M water storage residuals and A is the matrix representing the budget 601 

equations.  For the jth water storage residual, 602 

 603 

 ܴ �ൌ ��σ ܽ
ே
ୀଵ  �ǡ         (18) 604ܨ�

 605 

where each ܽ is an element of A.  Then, optimization of the fluxes Fi demands minimizing the 606 

functional 607 

 608 

�ܬ  ؠ �� ሺࡲ െ ି࢙࢈ࡲࡿ�ሻ்࢙࢈ࡲ �ሺࡲ െ ሻ࢙࢈ࡲ ��� ሺࡾ� െ࢙࢈ࡾ��ሻ்ି࢙࢈ࡾࡿ� �ሺࡾ� െ࢙࢈ࡾ��ሻ�ǡ (19) 609 

 610 

where SFobs and SRobs are covariance matrices representing the uncertainties of Fobs and Robs, 611 

respectively.  Here, obs denotes an observed flux/storage, and the unsubscripted flux/storage 612 

terms represent optimized values.  Minimizing J with respect to F gives (e.g., Rodgers, 2000) 613 

 614 
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�ࡲ  ൌ ࢙࢈ࡲ�� ��� ൫ି࢙࢈ࡾࡿࢀࡷ �ࡷ ି࢙࢈ࡲࡿ�� ൯ିଵି࢙࢈ࡾࡿࢀࡷ� �ሺ࢙࢈ࡾ െ  ሻ ,  (20) 615࢙࢈ࡲࡷ

 616 

where K is the Jacobian of R with respect to F.  The solution for the optimal F is otherwise 617 

known as the maximum a posteriori solution, and the uncertainty of this solution is given by the 618 

error covariance, 619 

 620 

ࡲࡿ  �ൌ �� ൫ି࢙࢈ࡾࡿࢀࡷ �ࡷ ି࢙࢈ࡲࡿ�� ൯ିଵ�Ǥ       (21) 621 

 622 

Due to lack of information regarding the correlation of the errors of different 623 

fluxes/storage terms, all off-diagonal covariance elements of SFobs and SRobs are assumed to be 624 

zero.  Also, in many cases it is assumed that the water fluxes exactly offset one another in a 625 

given budget equation (e.g., the annual equations labeled with an “A” in section 4.2), and in 626 

these cases, Rj = 0, and a small uncertainty (� 0.016 mm/day) is assigned to the corresponding 627 

error variance in SRobs.  In these cases, stable solutions are found for F that are consistent with 628 

Fobs and their uncertainties while obeying the specified budget equation with no change in 629 

storage. Similarly, stable solutions are found when observations suggest Rj /= 0 (e.g., monthly 630 

surface and atmospheric water budget).  Solutions may be unstable when the uncertainty is too 631 

small, so in those cases the uncertainty was raised until a reasonable solution was achieved by 632 

comparing the magnitude of the flux adjustments against their estimated uncertainties.   633 

 634 

1) Annual Optimization 635 

The foregoing optimization framework is first applied to the collection of observations on 636 

an annual mean basis.  Taking advantage of the equivalence of evapotranspiration and latent heat 637 
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flux, all water and energy fluxes are optimized simultaneously to achieve coherent water and 638 

energy budget closure.  The fluxes that are optimized include the horizontal convergence of 639 

atmospheric water vapor, C, evapotranspiration, E, precipitation, P, runoff, Q, surface longwave 640 

downwelling radiation, DLR, surface shortwave downwelling radiation, DSR, surface longwave 641 

upwelling radiation, ULW, surface shortwave upwelling radiation, USW, and surface sensible 642 

heat flux, SH, over the seven continental regions and the global ocean.  Also optimized are the 643 

global net outgoing longwave radiation, OLR, and the global net downwelling shortwave 644 

radiation, TSR, both at the top of the atmosphere.  These annual mean fluxes are constrained by 645 

the budget equations that describe the annual storage of water vapor, dW, terrestrial water, dS, 646 

and downward transfer of energy at the earth’s surface, NET, over the seven continental regions 647 

and the global ocean.  Application of simultaneous closure in individual ocean basins is 648 

impossible without estimates of water and energy transport between adjacent basins.  While 649 

technically feasible to constrain C, P, and E to dW at each basin in this framework, we find that it 650 

biases all results towards those flux estimates that are contained in the most equations within the 651 

optimization routine.  In particular, including C, P, and E in twelve additional equations biases 652 

the results away from the energy flux estimates, simply because the latter are then represented in 653 

fewer equations than the water flux estimates.  For this reason, all fluxes except for TSR and 654 

OLR are optimized through dW, dS, and NET constraints over the seven continental regions and 655 

the global ocean (i.e. sum of all basins), whereas TSR and OLF are constrained to the global 656 

NETA balance (i.e., sum of all regions).  Observed annual dW for all regions are equal to or very 657 

close to zero as expected.  It is assumed that dS is zero in all regions, although in reality trends in 658 

S do exist (e.g., Luthcke et al., 2013).  Similarly, the net energy transfer to the earth, NET, over 659 

each land region is assumed to be zero, while the net energy transfer to the ocean basins is 660 
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assumed to be 0.6 W m-2 with an uncertainty of 0.4 W m-2, based upon recent estimates of ocean 661 

heat storage from the Argo array (Willis et al., 2009; Lyman et al., 2010).  Regarding energy in 662 

the atmosphere, it is assumed that the global annual-mean net storage of energy is zero, 663 

 664 

ܣܶܧܰ  ൌ ܴܶܵ െ ܴܮܱ  ௩ܲܮ  ܪܵ െ ܴܮܦ െ ܴܵܦ  ܹܮܷ  ܷܹܵ� ൌ Ͳ�ǡ  (22) 665 

 666 

and that the convergence of atmospheric dry static energy is zero on a global, annual-mean basis.  667 

The specific implementation of Fobs and R is presented in Appendix A and further discussed in 668 

the companion article by L’Ecuyer et al. (2014).  669 

The resulting global ocean water component fluxes, C, E, and P, are in balance with the 670 

energy fluxes.  Next we seek to adjust the water fluxes in each ocean basin so that they sum up to 671 

the optimized global ocean fluxes while maintaining the atmospheric water balance.  First, the 672 

fluxes are optimized through the dW constraint at individual basins.  Subsequently, a Lagrange 673 

multiplier approach (e.g., Bertsekas, 1996) is used to adjust the optimized basin fluxes according 674 

to the error variance of the individual basin fluxes.  Here, we wish to obtain the spatially 675 

constrained basin fluxes, Gl, and the corresponding global ocean flux, F, such that 676 

 677 

 678 

��ܨ  ൌ �� ଵ �σ ܩ
ୀଵ �ǡ         (23) 679 

 680 

where l is the index for basins 1 to L, with L=9.  Because an exact match between the sum of 681 

basin fluxes and the global ocean flux is desired, a strong constraint approach is taken, and the 682 

Lagrangian to be minimized is 683 
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 684 

 Ȧ� ൌ ��σ ሺீିீைሻమ
ଶ�ఙమ


ୀଵ ���� �ߣ����� ቀܨ� െ�� ଵ �σ ܩ

ୀଵ ቁ�ǡ     (24) 685 

 686 

where Vl is the uncertainty of the lth optimized basin flux, GOl from the first step, and O is a 687 

Lagrange multiplier.  After taking the derivative of (24) with respect to O� setting the result to 688 

zero, and substituting terms, the adjusted flux at kth basin is obtained through the relationship, 689 

 690 

ܩ  �ൌ ܱܩ�� ��� �ఙೖమ
σ ఙమಽ
సభ

�ቀܨ� െ�� ଵ �σ ܩ ܱ
ୀଵ ቁ�Ǥ      (25) 691 

 692 

2) Monthly Optimization 693 

 Annual optimization is performed first because the observed annual-mean fluxes and 694 

their uncertainties are deemed more reliable than the monthly fluxes.  Changes in storage also 695 

must be accounted at sub-annual scales.  Energy balance constraints are weakened due to the 696 

lack of reliable heat transport observations, so that only the monthly water fluxes are optimized 697 

within the same framework as that of the annual scale.  With the water and energy budgets being 698 

decoupled, it is now desirable to enforce atmospheric water balance over each basin.      699 

 Monthly optimization is performed in two steps.  Lacking a complete set of energy 700 

fluxes, the first step is to use the same set of budget equations as in the annual optimization but 701 

without any constraints on NET and NETA; i.e., only the dW and dS constraints are imposed.  702 

This first step is performed for all months separately; however, the resulting optimized monthly 703 

fluxes are not necessarily consistent with the optimized annual-mean values.  Therefore, a 704 

second “hard” constraint step is applied to ensure that the sum of the monthly fluxes of each 705 
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category are exactly equal to the optimized annual total flux, but respecting the relative 706 

uncertainty of each monthly observation.  In the second step, a Lagrange multiplier approach  is 707 

again used, this time to adjust the monthly fluxes derived from the first step, identified 708 

generically here as GOl, where l is the index for a particular month.  If the annually-constrained 709 

monthly fluxes are denoted by Gl, and the corresponding annual flux is denoted by F, as above, 710 

then the constraint on the adjusted fluxes is expressed as in (23), this time with L = 12 (note that 711 

the only purpose and effect of dividing by L is consistency of units, i.e., both F and Gl are 712 

quantified in cm/month in this application).  The Lagrangian to be minimized is defined in (24), 713 

but in this case, Vl is the uncertainty of the lth optimized monthly flux, GOl, and O is a Lagrange 714 

multiplier.  The solution for the kth adjusted monthly flux is found using (25).  Note that each 715 

monthly flux from the first step is adjusted based on the bias of the annual mean, in proportion to 716 

the uncertainty of that flux, and that the annual mean of the adjusted Gk is equal to F. 717 

 718 

d.  Metrics 719 

 Evaluation of an analysis and resulting dataset is difficult when most of the pertinent data 720 

are incorporated into the final product.  Nevertheless we identify three metrics of success.  First, 721 

the new global flux estimates are compared with those of Trenberth et al. (2011) and Oki and 722 

Kanae (2006), two recent, well regarded global water budget analyses.  We presume that the 723 

latter should lie within the error bounds of our new estimates.  Second, the initial and optimized 724 

uncertainty estimates are compared with residuals of the pre-optimization (observed) water 725 

budgets at multiple scales.  A residual that was much larger than the estimated total uncertainty 726 

would suggest that uncertainty in one or more of the fluxes was overly optimistic (small).  Third, 727 
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the difference between the observed and optimized estimates of any variable should be smaller 728 

than the uncertainty in that variable, else the predicted uncertainty was overly optimistic.   729 

 730 

 731 

5.  Results 732 

a. Mean Annual Fluxes 733 

 The mean annual fluxes of the global water cycle and associated uncertainty ranges are 734 

depicted in Figure 1.  The white numbers are the original “observed” fluxes and uncertainties 735 

from either a single, preferred source or an average over multiple estimates.  The blue numbers 736 

are the estimates resulting from water cycle closure using the optimization technique described 737 

in Section 4.  Annual precipitation, evapotranspiration, and runoff over the global land surface 738 

are estimated to be 116,500 ±5,100, 70,600 ±5,000, and 45,900 ±4,400 km3/yr, respectively, after 739 

optimization.  Annual precipitation and evaporation over the global ocean surface are estimated 740 

to be 403,600 ±22,200 and 449,500 ±22,200 km3/yr after optimization.  For reference, the 741 

capacity of the Great Lakes is about 23,000 km3 (Fuller et al., 1995), and mankind’s global, 742 

annual water footprint related to agriculture, industry, and domestic water supply is about 9,100 743 

km3/yr (Hoekstra and Mekonnen, 2012), so the magnitudes of these freshwater fluxes are 744 

staggering.  The optimization routine produces revised error estimates as a standard output.   745 

Narrowing of the uncertainty range is a natural statistical response to the application of new 746 

constraints, similar to increasing the sample size when computing an expected value.   Whether 747 

or not the optimized values are in fact closer to the truth than the original observed estimates 748 

depends in part on the veracity of the assumption that those original estimates are unbiased.   749 
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 In all cases the optimized global annual flux estimate is well within the uncertainty range 750 

of the observed estimate, save for ocean evaporation, which is just outside of the range.  That 751 

bodes well for the realism and conservatism of the original error estimates.  Further, the same is 752 

true for the observed fluxes and the optimized ranges, again with the exception of ocean 753 

evaporation.  The large adjustment to ocean evaporation is due in part to simultaneous closure of 754 

the energy budget, and it is examined further in the Discussion section.   755 

Overall, the compatibility (in the sense of a closed water budget) of the observed water 756 

cycle fluxes, which are largely but not completely independent in their origins, is encouraging.  757 

The observed global, annual, terrestrial water budget (equation 6A applied to all land) closes 758 

with a residual equal to 4.3% of PL, considerably better than the expected error of 10.1% 759 

(computed as the square root of the sum of the squares of the component flux errors).  After 760 

optimization, the expected error is reduced to 7.2% (the residual being forced toward zero).  The 761 

observed global, annual, ocean water budget (equation 15A) closes with a residual of 6.6% of PO, 762 

with an expected error of 13.8%.  Optimization reduces the expected error to 7.8%.  The 763 

observed global, annual, atmospheric water budget (equation 18A) closes with a residual of 4.7% 764 

of PW, with a 13.6% expected error being reduced to 7.5% by optimization.  Hence the expected 765 

errors after optimization for the annual, global land, ocean, and atmospheric water budgets are 766 

less than 10%, which is consistent with a stated goal of NEWS (NSIT, 2007).  That the observed 767 

residuals are considerably smaller than the expected errors suggests that we may have a better 768 

handle on global, annual water fluxes than previously supposed. 769 

Figure 2 shows optimized, mean annual precipitation, evapotranspiration, runoff, and 770 

amplitude of the annual cycle of terrestrial water storage for each continent.  The same numbers 771 

are presented in Table 3, along with the original observed estimates, uncertainties, and water 772 
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budget residuals.  Also included in Table 3 are ocean P and E.  While most previous studies have 773 

ignored the Australasian and Indonesian Islands (including New Zealand and Tazmania), it is 774 

notable that they receive nearly as much rainfall as mainland Australia and produce almost 775 

double the runoff.  They also receive more precipitation than Antarctica despite having one 776 

eighth the land area.   777 

As seen in Table 3, with the notable exception of North America, for every continent as 778 

well as the world ocean, the expected closure error exceeds the magnitude of the surface water 779 

budget residual.  In North America, difficulty measuring snowfall, which accounts for a large 780 

portion of precipitation, and runoff from Greenland and the islands of northern Canada are 781 

possible explanations for the larger than anticipated water budget residual.  Still, the magnitude 782 

of the world land surface water budget residual, -3.4 mm/day, is well below that of the expected 783 

closure error, 8.0 mm/day.  The atmospheric water budget residuals are within the error bounds 784 

for all ocean basins.  These outcomes lend credence to the initial uncertainty estimates, which 785 

may in fact be overly conservative at the global land and global ocean scales.  On the other hand, 786 

the atmospheric water budget residuals exceed the expected closure errors over mainland 787 

Australia, the Australasian and Indonesian Islands, and the Black Sea.  Larger than expected 788 

residuals over the Islands and the Black Sea may be attributed to their small scale and limited 789 

observational constraints.  The large residual over mainland Australia seems to arise from an 790 

imbalance in MERRA, which provides the sole atmospheric moisture convergence estimate due 791 

to the lack of a QuikSCAT Water Balance estimate for Australia.  For the same period, MERRA 792 

P minus ET over Australia averages 11.9 mm/day, compared with a C estimate of 23.8 mm/day.  793 

The former number is more compatible with our original P and E estimates and would produce 794 

an atmospheric water budget residual of only -0.9 mm/day if substituted for MERRA convergenc 795 
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 796 

b. Mean Monthly Fluxes 797 

 The seasonal cycles of precipitation, evapotranspiration, runoff, atmospheric 798 

convergence, and water storage change over each continent and the global land and global ocean 799 

are plotted in Figure 3 (recall equations 3 and 4).  Continents in the northern hemisphere have 800 

peak P, ET, and Q in the summer, and accumulate water in the winter.  The same is true for the 801 

continents in the southern hemisphere, except that Q peaks later, in austral autumn, in South 802 

America, and the fluxes in Antarctica have a weak, bimodal annual cycle with P and ET minima 803 

in austral summer.  Africa, which straddles the equator, has bimodal fluxes.  Terrestrial water 804 

storage changes are dominated by the outputs, ET and Q, at the global scale and in most 805 

continents, but dS is controlled by P in South America, Africa, and the Australasian and 806 

Indonesian Islands. 807 

It may seem counterintuitive that terrestrial precipitation peaks a month after terrestrial 808 

runoff at the global scale, considering that rainfall drives runoff.  While the water fluxes 809 

associated with individual precipitation events or anomalously wet or dry periods are likely to 810 

behave that way (e.g., Changnon, 1987), the seasonal cycles of the fluxes are influenced by other 811 

factors.  In North America, the snowpack immobilizes a large portion of annual continental 812 

precipitation and subsequently melts and releases it in the spring (snowpack is not isolated from 813 

terrestrial water storage in this analysis).  As a result, Q peaks in June, while P, due to the 814 

strength of summer convective rainfall, peaks in July.  The same is true in northern Eurasia.  815 

Further, the precipitation to runoff ratio happens to be smaller in June than July in all continents 816 

except for South America and Australia, hence the phenomenon of P lagging Q can also be 817 

attributed in part to a fluke of global averaging.   818 
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Similarly, the global, annual cycle of evapotranspiration does not lag but is more or less 819 

contemporaneous with precipitation, and precipitation actually lags evapotranspiration in South 820 

America.  There, continental scale water fluxes are dominated by those in Amazonia, where 821 

water generally is abundant throughout the year.  Thus ET is, for the most part, energy limited.  822 

That explains why ET peaks in January (when downward radiation is greatest in the southern 823 

hemisphere), two months before maximum P.  However, downward radiation does not fluctuate 824 

much seasonally in the equatorial regions, so that the annual cycle of ET is weak (Rodell et al., 825 

2011) despite an annual mean intensive rate of ET in South America that far exceeds that of the 826 

other continents (excepting the Australasian and Indonesian Islands).  Further, because seasonal 827 

changes in ET and Q in South America are out of phase and both are small compared with 828 

seasonal changes in P, the annual cycles of P, C, and dS have nearly identical amplitude and 829 

phase.  The seasonal phase of Q is closer to that of terrestrial water storage (S; not shown) than 830 

that of P, with a maximum in April-May and a minimum in September-October.  Modulation of 831 

Q by S (via baseflow or, in the case of the Amazon, release of floodplain storage), which is a 832 

central tenet of the bucket model of terrestrial hydrology (Manabe, 1969), holds true for Africa 833 

and Australia as well.   834 

In Eurasia, evapotranspiration follows the seasonal cycles of precipitation and solar 835 

radiation, peaking in July and bottoming in January. The relationship between P, S, and Q is 836 

more complicated.  The seasonal cycle of S (not shown) achieves its maximum and minimum in 837 

April and October, respectively, while maximum and minimum Q occur in September and 838 

February.  In this case, P seems to control Q more strongly, with a 1-2 month lag.  That may be a 839 

consequence of an annual cycle of S with amplitude less than half that of North America and 840 

about a quarter that of South America.  Despite the size of Eurasia, the average residence time of 841 
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water after it falls on the land surface appears, perhaps deceptively, to be relatively short.  More 842 

likely, the unusual timing of Q with respect to S may be the result of two very different climates 843 

being averaged together: northern Eurasia where the snowpack stores and releases runoff, and 844 

southern Eurasia where powerful monsoons regulate the seasonal cycles of P, S, and Q. 845 

As mentioned previously, monthly runoff (ice flow to the ocean) from Antarctica and 846 

Greenland was computed as a water budget residual.  Of the other fluxes, monthly mean dS over 847 

Antarctica from GRACE is believed to be robust; P is not well constrained by observations, but 848 

there is a reasonably small RMS difference of 13% between monthly P from GPCP and 849 

MERRA; and ET is likewise not well constrained but is believed to be inconsequential, 850 

averaging only 5% of P according to both MERRA and Princeton estimates.  851 

Averaged over the world’s oceans, precipitation appears to be nearly constant throughout 852 

the year (although a difference of just 1 mm/day equates to 361 km3/day when spread over the 853 

global ocean).  E is greatest in December and January, when downward radiation is strongest 854 

over the southern oceans and the air over the northern oceans is dry,  and it remains relatively 855 

low from April through October.  Terrestrial runoff into the oceans peaks in June and July, and 856 

because of that and the low austral winter E and nearly constant P, ocean storage begins to 857 

increase in May and reaches a maximum in October (coinciding with minimum northern snow 858 

water storage).  Ocean C and dS are in phase with Q, peaking in June (May for C) and bottoming 859 

in December and January. 860 

As seen in Figure 4, among the major ocean basins, the largest flux rates occur in the 861 

North Pacific and the smallest occur in the Arctic.  The ranges of monthly flux rates in the other 862 

four basins are similar, though those in the South Atlantic are typically on the low side.  In the 863 

North Pacific and Arctic, minimum P occurs in April and February, respectively, and maximum 864 
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P occurs in August for both.  The seasonal cycle of P in the north Atlantic lags that of the other 865 

two northern ocean basins by three months.  Precipitation in the southern oceans has the opposite 866 

phase, with greater than average P in austral autumn and lower than average P in austral spring.   867 

Evaporation in the Arctic peaks in May, just prior to the month of maximum insolation, 868 

with a secondary peak in October, when sea ice is near its minimum.  In all of the other ocean 869 

basins, E is largest in winter and smallest in summer.  The negative correlation with the seasonal 870 

cycle of solar radiation and heating of the surface may seem counterintuitive until one recognizes 871 

two facts.  First, most ocean evaporation occurs in the tropics, where solar radiation is nearly 872 

constant through the year.  Second, evaporation is enhanced by dry, cold air outbreaks 873 

(particularly over the Gulf stream in the western North Atlantic and the Kuroshio current in the 874 

western North Pacific) and mid-latitude storms (due to their winds). 875 

In general, the seasonal cycles of atmospheric convergence over the major ocean basins 876 

form smoother sinusoids than those of precipitation or evaporation, with familiar summer 877 

maxima and winter minima.  A notable exception is the bimodal convergence in the North 878 

Atlantic, where separate maxima occur in June and September.  P exceeds E (i.e., C is positive) 879 

in every month of the year in the Arctic Ocean.  The North Pacific is the only other major ocean 880 

basin that has positive annual mean C (also see Table 3).  That is somewhat surprising, 881 

considering that more than half of the North Pacific lies in the tropics, where the rate of 882 

evaporation is normally very high over open water.  In fact, E over the North Pacific is 883 

comparable to that over the other ocean basins excluding the Arctic, but P is significantly larger, 884 

which tips the balance towards a positive annual mean C. This probably reflects the fact that the  885 

intertropical convergence zone is aligned at roughly 7.5°N over the Pacific. 886 

 887 
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6.  Discussion 888 

a. Water Budget Closure 889 

 This study demonstrates that global and continental/ocean basin, annual and monthly 890 

mean water balance closure can be achieved with acceptably small residuals and uncertainty 891 

(3.9% and 7.4% of precipitation, respectively, for the global surface water budget and 892 

significantly less than 10% in most other cases) based on modern satellite and model derived 893 

datasets.  Uncertainty estimates provided with those datasets appear to be sufficiently 894 

conservative, as the actual water budget residuals are smaller than the predicted errors in all but a 895 

few cases.  Our optimization approach imposes terrestrial, atmospheric, and oceanic water and 896 

energy budget closure at continental, oceanic, and global scales, on a mean monthly and mean 897 

annual basis.  The uncertainty in all elements of the resulting dataset is smaller than the original 898 

observation error estimates (an inherent outcome of the approach), and in most cases both the 899 

original and optimized error estimates are reasonable when compared with residuals of the 900 

original observation based balance equations.  Thus current quantitative understanding of the 901 

global water budget seems to be as good as or, in many cases, better than had previously been 902 

supposed.  On the other hand, a pessimist might argue that 6% uncertainty in global ocean 903 

precipitation equates to more than half of the world’s river discharge, so we still have work to do 904 

before we can claim we have a handle on the global water cycle. In the following paragraphs, 905 

imbalances and closure errors are presented as percentages of precipitation. 906 

Assessing the surface water balance first, at the global, annual scale, the water budget 907 

closure error was predicted to be about 12.5% of precipitation.  The actual residual of 908 

observational estimates is 3.9%, and the estimated uncertainty in the optimized global, annual 909 

surface water budget is 6.1%.  Over the global land surface, the predicted annual water budget 910 
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closure error was 10.1%, while the observed residual is 4.3%.  After optimization, the estimated 911 

uncertainty declines to 7.2%.  For the global ocean, the predicted closure error was 13.8%, while 912 

the observed residual and optimized uncertainty are 6.6% and 7.8%.  Optimization increases the 913 

global ocean estimate of precipitation from GPCP by 4.7%, which is nearly identical to the 914 

conclusion of Behrangi et al. (2012; 2014).   915 

The global, annual scale, atmospheric water budget was predicted to have 13.6% closure 916 

error, but the actual observed residual is much smaller, 4.7%, and the optimized error is 7.5%.  917 

The world land-atmosphere water imbalance was predicted to be 8.6%, while the observed 918 

residual is only 0.3% and the optimized error estimate is 7.2%.  The world ocean-atmosphere 919 

water imbalance was predicted to be 14.6%, while the observed residual is 5.9% and the 920 

optimized closure uncertainty is 7.8%.  As previously noted, the observed residuals and 921 

optimized error estimates in each of these global, annual cases are better than the NEWS goal of 922 

10% water balance uncertainty (NSIT, 2007). 923 

Predicted uncertainty in the monthly mean water budgets over the global land surface 924 

ranged from 11.1% in March to 15.1% in June, with an average of 12.9%.  Observed residuals 925 

range from 0.3% in March and December to 18.4% in June, averaging 4.7%.  Larger errors and 926 

residuals in May-August seem to arise from uncertainty in ET and Q.  ET estimates from the 927 

three sources, Princeton, MERRA, and GLDAS, differ more during those months, and both ET 928 

and Q are elevated during boreal summer, so there is more room for error in absolute terms.    929 

Indeed, optimization reduces the June Q estimate by 18% and the June ET estimate by 6%.  930 

During a typical month, optimization changes those fluxes by less than 5% and 2%, respectively.  931 

Optimized terrestrial water budget uncertainty is close to 9% in every month.  Predicted 932 

uncertainty in the monthly mean, global land-atmosphere water balance ranged from 9.7% 933 
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(September) to 12.4% (December), averaging 11.2%.  Observed residuals range from 0.9% in 934 

October to 8.0% in January, with a mean of 3.6%.  Optimized uncertainty is close to 8% in all 935 

months.  Thus, over the global land, with the exception of the surface water budget during the 936 

boreal summer months when global Q and ET rise, the observed terrestrial and atmospheric-937 

terrestrial water budgets close with less than 10% error, often much less, and the optimized water 938 

budget uncertainty is around 8-9% in all cases. 939 

Among the continents, annual, surface water balance closure error was expected to be 940 

largest over Antarctica (32.4%), Australia and the Islands (16.1%), and Eurasia (12.5%).  941 

Optimized uncertainty in Antarctica declines to 17.3%, but the Antarctic water budget is a weak 942 

point of this study due to the lack of observed Q and a significant dependence on MERRA.  On 943 

the other hand, the fluxes are relatively tiny in Antarctica, so that the errors are small in absolute 944 

terms.  The observed residual and optimized uncertainty for Australia and the Islands are 8.6% 945 

and 9.6%.  Those for Eurasia are 5.1% and 8.7%.  Hence, aside from Antarctica and the 946 

Australasian and Indonesian Islands when separated from Australia, all observed residuals and 947 

optimized errors for the annual, continental surface water budgets are below the 10% target.  The 948 

smallest predicted and optimized errors are those of South America (8.0% and 5.7%), and the 949 

smallest observed surface water budget residual is that of Africa (2.1%), though it should not be 950 

inferred that Africa’s water cycle is therefore well observed and constrained.  Despite higher 951 

densities of meteorological observations in North America and Eurasia, it is possible that water 952 

budget closure is hindered by more complex hydrology, i.e., seasonal snow and ice. 953 

The annual land-atmosphere closure error was predicted to be largest over Antarctica 954 

(30.9%) and Australia and the Islands (14.6%).  The observed residual and optimized uncertainty 955 

for Antarctica are 16.3% and 17.2% of precipitation, and they are 18.9% and 9.6% over Australia 956 
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and the Islands.  Surprisingly, the residual is larger over mainland Australia (24.9%) than over 957 

the Islands (17.3%).  As described in section 5.1, this seems to arise from an overestimate of C 958 

from MERRA.  The smallest predicted, observed (residual), and optimized errors are found over 959 

the same two continents as above, Africa (8.5%) and South America (1.3% and 5.7%).   960 

 The individual ocean basin surface water budgets are not closed due to the lack of ocean 961 

transport observations.  The annual ocean-atmosphere water imbalance was predicted to be 962 

largest over the Arctic Ocean (52.6%) and the Mediterranean Sea (37.7%).  The observed 963 

residuals are smaller (33.4% and 9.8%), as are the optimized uncertainty estimates (15.8% and 964 

13.7%).  The Black Sea has the largest observed residual as a percentage, 51.5%, but in absolute 965 

terms it is not very large.  Expected errors for the major ocean basins other than the Arctic were 966 

all in the range of 11-19%, and optimization reduces that range to 7-15%.  Observed residuals in 967 

those ocean basins range from 3.2% (North Atlantic) to 18.2% (South Atlantic). 968 

The global ocean-atmosphere water balance was predicted to close with about 14% 969 

uncertainty during each month of the year.  Observed residuals vary between 2.9% in July and 970 

9.5% in March.  Optimized water budget uncertainty is close to 10% in all months.  Thus the 971 

observed residuals and optimized errors for the annual and monthly, global ocean and individual 972 

ocean basin-atmosphere water budgets satisfy the 10% target level in the majority of cases, the 973 

most notable exceptions being the large residual and optimized errors in the South Atlantic. 974 

 975 

b. Evaluation of Metrics 976 

 Comparison of the optimized fluxes with those of Trenberth et al. (2011; henceforth T11) 977 

and Oki and Kanae (2006; henceforth OK06) reveals their global fluxes (Figure 1) all lie within 978 

our uncertainty ranges, save for the OK06 land precipitation value, which is slightly below the 979 
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low end of our range.  It is notable that the budget closure process causes our ocean P and E to 980 

go from observed values that are smaller (385,300 and 409,500 km3/yr) than both T11 (386,000 981 

and 426,000 km3/yr) and OK06 (391,000 and 436,500 km3/yr) to optimized values that are quite 982 

a bit larger (403,600 and 449,500 km3/yr).  Some of the discrepancies between the three studies 983 

may be attributed to the use of different time periods (2002-08 in T11; data from multiple 984 

periods, mostly before 2000, are used in OK06) and ocean/land masks.   985 

The optimization process increases our ocean precipitation number by about 4.7% over 986 

the observed number (GPCP), which is well within the GPCP error bars of 8-10% for global 987 

ocean precipitation (Adler et al., 2012).   The GPCP ocean magnitudes also compare well (within 988 

a few percent) with TRMM climatology estimates in the tropics (Adler et al. 2009; Wang et al., 989 

2014).  In addition, recent studies using TRMM plus Cloudsat information by Behrangi et al. 990 

(2012; 2014) report ocean precipitation that is 5% above GPCP.  Our upward adjustment of 991 

GPCP ocean precipitation and surface latent heat flux is largely influenced by the energy budget, 992 

in that turbulent heat fluxes that were significantly larger than the initial estimates were required 993 

to balance net radiation (see L’Ecuyer et al., 2014, for further discussion).  Stephens et al. (2013) 994 

increased GPCP global (land plus ocean) precipitation by 15% to balance surface radiation in 995 

their study, which is far more than the 4.7% ocean adjustment and <1% land adjustment applied 996 

in this study.    997 

Our second metric was a comparison of the initial and optimized uncertainty estimates 998 

with the residuals of the observed water budget equations.  We determined that, in most cases, 999 

the predicted errors were smaller than the residuals (see Sections 5 and 6.1).  Further, the 1000 

differences between the observed and optimized estimates of most fluxes were generally smaller 1001 

than the associated uncertainties, even in the cases of ocean P and E.  Overall, our approach – 1002 
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beginning with a foundation of observations and adjusting their magnitudes based on relative 1003 

errors to achieve water budget closure, and through the merger with the energy budget – seems 1004 

to provide reasonable, balanced estimates of the components of both the global and regional 1005 

water cycles.   1006 

 1007 

c. Shortcomings 1008 

 In addition to the coarse spatial and temporal resolutions of this analysis, the way that 1009 

certain variables are lumped together (e.g., rainfall and snowfall), and a focus on changes in 1010 

terrestrial and ocean water storage with no attempt to estimate the size of each reservoir (e.g., 1011 

Shiklomanov and Rodda, 2003), there remain sources of possible error and other shortcomings 1012 

relative to the ideal global water budget analysis.  Some result from decisions made in framing 1013 

the study.  In particular, a major objective has been to rely on modern, observation-integrating 1014 

datasets, particularly those derived from satellite observations, which necessarily limits the use 1015 

of in situ observations and prevents estimation of the sizes of various stocks of water.  Similarly, 1016 

we gave preference to datasets developed by members of the NEWS team in order to ensure that 1017 

expertise would be available to inform the optimization and to interpret the results and that the 1018 

specifically defined continental and ocean basin, decadal-means would be provided, along with 1019 

uncertainty estimates.   As a consequence, other datasets which may in fact have had smaller 1020 

errors were intentionally omitted from the analysis.  For example, some evidence suggests that 1021 

model-based precipitation estimates may be better than observations at higher latitudes, but we 1022 

chose to rely exclusively on GPCP.  Further, there are tens of global evapotranspiration datasets 1023 

available (e.g., Jimenez et al., 2011; Mueller et al., 2011) whose inclusion probably would 1024 

reduce uncertainty in our continental scale estimates, but we determined to use three that have a 1025 
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high proportion of satellite based inputs: one directly derived from observations and two based 1026 

on observation integrating models (one coupled, one land surface only).   1027 

We chose to examine the first decade of the new millennium rather than developing a 1028 

true climatology, which is commonly taken to require at least 30 years of data.  That decision 1029 

was made in part because the 2000s are the EOS era (thus it is a corollary of the first 1030 

decision/objective) and in part because it presumes future, routine, decadal state of the water 1031 

cycle studies, with the goal of detecting water cycle shifts related to climate change.  Still, it 1032 

would not be appropriate to use the results presented herein exactly as one would use a 1033 

climatology, nor would it be scientifically justifiable to conclude that an observed shift or trend 1034 

based on two or three such studies is real and likely to continue, unless accompanied by a well 1035 

vetted explanation of the mechanism and other corroborating information.  For example, 1036 

Australia experienced its worst drought in over 100 years during 2001-09 (van Dijk et al., 2013).  1037 

As a result the continental Australian water budget depicted here is likely to be weaker than that 1038 

of the decade that follows, yet a wetting trend should not in the future be inferred. 1039 

On the other hand, there are some real trends in terrestrial water storage as measured by 1040 

GRACE that we intentionally ignore.  In particular, Greenland, Antarctica, and the glaciers along 1041 

the Gulf of Alaska have been shedding ice at a total rate of 380 km3/yr (Luthcke et al., 2013).  1042 

Our estimates of dS are based on detrended time series, and our Q estimates are based on 1043 

continental water budgets with mean annual dS equal to zero. 1044 

While optimization of the water fluxes through the simultaneous constraint of budget 1045 

equations across multiple spatial and temporal scales is an important advance that certainly 1046 

improved the outcomes of this study, our approach relies on assumptions that are unlikely to be 1047 

true in all cases.  In particular, unbiased, Gaussian statistics are assumed.  Evidence to support 1048 
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that assumption is limited to a study by Sardeshmukh et al. (2000), who showed that rainfall is 1049 

largely normally distributed at the 2.5° monthly scale for regions of mean upward motion (i.e., 1050 

substantial amounts of rain).  However, structural errors are likely to exist due to imperfect 1051 

retrieval algorithms and uneven sampling of the diurnal cycle.  Biases in our estimates and non-1052 

Gaussian or correlated errors would reduce the efficacy of the optimization routine and lead to 1053 

less accurate flux estimates and associated uncertainty ranges.  Nevertheless, lacking better 1054 

information on the statistical distributions of the input datasets, little can be done to quantify or 1055 

control these potential deficiencies. 1056 

 1057 

d. The Value of Modern Datasets 1058 

 EOS era observations and output from data assimilating models form the basis of this 1059 

analysis.  Without them an accounting of the global water budget at the turn of the century would 1060 

rely heavily on incomplete surface data and guesswork.  While such an accounting may be useful 1061 

when global climate is stationary, it cannot be used to quantify water cycle fluxes now and how 1062 

they change in the future.  In situ and remote sensing data complement each other.  Ground 1063 

based meteorological or hydrological observations have been used to anchor, calibrate, or inform 1064 

all of the datasets used herein in some way or other.  Observations from satellites, including 1065 

those in GOES series, TRMM, Terra, and Aqua, are crucial for filling often extensive spatial and 1066 

temporal gaps in the surface observational record and for extending that record to the near-1067 

present.  Moreover, global data on terrestrial and oceanic water storage change, long the missing 1068 

link in water budget closure studies, is a product of GRACE that cannot feasibly be replicated by 1069 

ground based observations.   1070 
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 Data integrating models serve a similar gap-filling role in this analysis, and also enable 1071 

more and different types of data to be incorporated as constraints.  MERRA provides flux data 1072 

for regions of the world that are poorly monitored, including Antarctica and the Australasian and 1073 

Indonesian Islands.  MERRA and GLDAS evapotranspiration estimates are a valuable and 1074 

independent addition to observation-based ET, and together they enable uncertainty to be 1075 

assessed with a higher degree of confidence.  ECMWF Interim, the new Japanese reanalysis of 1076 

55 years extent (JRA55), and MERRA2 offer new input sources that could be used in a similar 1077 

study in the future.  The ongoing development of such data integrating models and reanalyses 1078 

undoubtedly will benefit future water and energy budget assessments and will be vital for 1079 

maximizing the value of Earth observing systems, a fact that must be considered in budgeting 1080 

future missions and planning the Global Earth Observation System of Systems (GEOSS). 1081 

While the GOES satellites have been serving continuously since 1975 and will extend 1082 

their record with the anticipated launch of GOES-R in late 2015, it is notable that TRMM, Terra, 1083 

Aqua, and GRACE all launched between 1997 and 2002 and are well beyond their design 1084 

lifetimes.  Considering the importance of observational continuity to any study of recent climate 1085 

variability and change, it is good that reinforcements are beginning to arrive. Terra’s and Aqua’s 1086 

observational capabilities have been augmented (and eventually may be replaced) by NASA’s 1087 

Suomi National Polar-orbiting Partnership mission (Suomi-NPP, launched in 2011), which 1088 

carries CERES and the Visible Infrared Imager Radiometer Suite (VIIRS; a technology similar 1089 

to MODIS), and by JAXA’s Global Change Observation Mission 1 – Water (GCOM-W1), 1090 

which carries the AMSR2 system.  TRMM is being succeeded by the NASA/JAXA Global 1091 

Precipitation Measurement mission (GPM), which launched on 28 February 2014.  A successor 1092 

to the GRACE mission, GRACE Follow On, is planned to launch in 2017.  Other current and 1093 
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future Earth observing satellites that could help to constrain global and regional water budgets 1094 

include the European Space Agency’s Soil Moisture Ocean Salinity mission (SMOS; launched 1095 

2009), NASA’s Soil Moisture Active Passive mission (SMAP; scheduled to launch in 2014), and 1096 

NASA’s Surface Water Ocean Topography mission (SWOT; proposed to launch in 2020).  1097 

SWOT would be particularly valuable for water budget studies, as it promises to improve 1098 

estimates of river discharge in parts of the world where such data are not made available for 1099 

political reasons and otherwise.  Together, these next generation Earth observing satellites offer 1100 

intriguing prospects for building on and improving the analysis presented here.  Still, there is 1101 

strong justification for increasing the pace of mission approval and deployment (NRC, 2007).  1102 

Further, the prospect of performing a similar study at finer than monthly, continental/ocean basin 1103 

scale, without greatly increasing reliance on numerical models, would be improved by higher 1104 

spatial and temporal resolution of observations, meaning more satellites and enhanced 1105 

technologies.  The path to that goal is fairly direct, but requires technical innovation and 1106 

sustained funding.   1107 

 1108 

e. Future Directions 1109 

 As noted above, increasing the spatial and temporal resolutions of this analysis are 1110 

obvious objectives for the future.  A second goal should be to extend the analysis forward in time 1111 

and begin to describe changes in the water budget from one period to the next.  For some time, it 1112 

will be difficult to determine with certainty which changes are part of a real, long term trend and 1113 

which are related to inter-decadal natural variability, but that should not discourage the effort.  1114 

The analysis of Robertson et al. (2014) is a step in that direction.  Third, as old satellites are 1115 

decommissioned and new ones are launched, it will be important to identify ensuing 1116 
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discontinuities in the data record.  Many other follow-on studies are merited, including 1117 

partitioning of the water storages and fluxes, assessing diurnal cycles, investigating extremes, 1118 

computing advanced statistics, and estimating the size of each storage reservoir and associated 1119 

residence times.  Because of the importance with which water and energy fluxes in Earth’s 1120 

climate system cross-cut other disciplines, in ways both physical and biogeochemical, there are 1121 

likely numerous directions in which the present study could be refined. 1122 

The current results should be applied toward the assessment of global climate prediction 1123 

models such as those contributing to the Coupled Model Intercomparison Project Phase 5 1124 

(CMIP5; Taylor et al., 2012), whose first goal is to “evaluate how realistic the models are in 1125 

simulating the recent past”.  Our water and energy budget analysis, whose resulting dataset is 1126 

available online (http://disc.gsfc.nasa.gov/hydrology) [to be uploaded after publication], was 1127 

performed with that goal in mind, and such comparisons are an essential step towards the NEWS 1128 

objective of improving predictions of future climate change. 1129 
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 1134 

Appendix 1135 

Fobs is a vector consisting of eight parameters over eight regions (seven continents and 1136 

global ocean), one parameter over only continents, and two additional parameters at the global 1137 

scale, all derived from observations.  The key for the regions are listed in Table 1.  The 1138 

parameters are the component fluxes of the water and energy balance equations: convergence 1139 
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(C), evapotranspiration (E), precipitation (P), runoff (Q), surface longwave downward radiation 1140 

(DLR), surface shortwave downward radiation (DSR), surface longwave upward radiation 1141 

(ULW), surface shortwave upward radiation (USW), surface sensible heat (SH), top of 1142 

atmosphere (TOA) net shortwave radiation (TSR), and TOA outgoing longwave radiation 1143 

(OLR).  Subscripts refer to the seven continents (e.g., na for North America), global ocean, and 1144 

world, where world is a sum of all regions.  Since we don’t have an observation for Qocean, it is 1145 

set equal to Qland, which is the sum of Q over all continents.  The one dimensional vector Fobs is 1146 

expressed in groups below for demonstration purpose (but it is a column vector and not a 2-1147 

dimensional matrix). 1148 

 1149 
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 1151 

R is a column vector consisting of residuals of the three balance equations over the seven 1152 

continents and global ocean and residuals of the two balance equations that serve as global 1153 

constraints.  The balance equations are defined in Section 4.2.     1154 
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Tables 1601 
 1602 
Parameter Dataset Name Contributing 

Remote Sensing 
Instruments 

Key References 

Precipitation GPCP v.2.2 SSMI, SSMIS, 
GOES-IR, TOVS, 
AIRS 

Adler et al. (2003); 
Huffman et al. (2009) 

Ocean Evaporation SeaFlux 1.0 SSMI, AVHRR, 
AMSR-E, TMI, 
WindSat 

Clayson et al. (2014) 

Terrestrial 
Evapotranspiration 

Princeton ET AIRS, CERES, 
MODIS, AVHRR 

Vinukollu et al. (2011) 

MERRA & MERRA-
Land 

MSU, HIRS, SSU, 
AMSU, AIRS, SSMI, 
ERS1/2, QuikSCAT, 
MODIS, GOES 

Rienecker et al. 
(2011); Bosilovich et 
al. (2011); Reichle 
(2012) 

GLDAS SSMI, SSMIS, 
GOES-IR, TOVS, 
AIRS, TRMM, 
MODIS, AVHRR 

Rodell et al. (2004b) 

River Runoff University of 
Washington Runoff 

TRMM, GOES-IR, 
TOVS, SSM/I, ERS, 
ATOVS 

Clark et al. (2014) 

Atmospheric 
Convergence 

MERRA See MERRA above See MERRA above 
QuikSCAT Water 
Balance 

QuikSCAT, TRMM, 
GRACE 

Liu et al. (2006) 

PMWC v.2.0 SSMI, AMSR-E, 
TMI, WindSat 

Hilburn (2009) 

Water Storage 
Changes 

Chambers/CSR RL05 GRACE Chambers and Bonin 
(2012); Johnson and 
Chambers (2013); 
Bettadpur (2012); 
Tapley et al. (2004) 

Precipitable Water 
Vapor 

AIRS & AMSR-E 
Precipitable Water 

AIRS, AMSR-E Fetzer et al. (2006) 

 1603 
Table 1. Sources of data used in this study. 1604 

 1605 
 1606 
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 1607 
 1608 
Table 2. Estimated coastline length (km) and land area (km2) for each continent and world land 1609 

based on the 0.25° land mask used in this study. 1610 
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 1611 
 1612 
Table 3.  Observed (plain text) and optimized (bold) mean annual fluxes (mm/day) of 1613 

precipitation (P), evapotranspiration (ET) or ocean evaporation (E), runoff (Q), and net 1614 

atmospheric convergence (C) for the continents, major ocean basins and seas, world land, world 1615 

ocean, and world.  Also shown are residuals of the surface (SWB) and atmospheric (AWB) water 1616 

budgets, and estimated errors on each flux and budget closure.  Note that the optimization 1617 

process forces the water budgets to close, hence there are no optimized residuals.  1618 

  1619 
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Figure Caption List 1620 
 1621 
Figure 1. Mean annual fluxes (1,000 km3/yr) of the global water cycle, and associated 1622 

uncertainties, during the first decade of the millennium.  White numbers are based on 1623 

observational products and data integrating models.  Blue numbers are estimates that have been 1624 

optimized by forcing water and energy budget closure and taking into account uncertainty in the 1625 

original estimates. 1626 

Figure 2.  Optimized annual mean fluxes for North America (including Greenland), South 1627 

America, Africa, Eurasia, the Islands of Australasia and Indonesia, mainland Australia, and 1628 

Antarctica: precipitation (blue), evapotranspiration (red), runoff (green), and annual amplitude of 1629 

terrestrial water storage (yellow), in 1,000 km3/yr. The background image shows GRACE-based 1630 

amplitude (maximum minus minimum) of the annual cycle of terrestrial water storage (cm). 1631 

Figure 3.  Optimized mean annual cycles of precipitation (blue), evapotranspiration (red), runoff 1632 

(green), atmospheric convergence (orange), and month-to-month water storage change (yellow), 1633 

in mm/day, over the continents and global ocean, during roughly 2000-2010.  Linear 1634 

interpolation is used between monthly values.  Shading indicates the uncertainty range.  Note the 1635 

y-axes are not uniform. 1636 

Figure 4. Optimized mean annual cycles of precipitation, evaporation, and atmospheric 1637 

convergence, in mm/day, over the major ocean basins, during roughly 2000-2010.  Linear 1638 

interpolation is used between monthly values.  Shading indicates the uncertainty range. 1639 
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Figures 1643 

 1644 
 1645 

Figure 1. Mean annual fluxes (1,000 km3/yr) of the global water cycle, and associated 1646 

uncertainties, during the first decade of the millennium.  White numbers are based on 1647 

observational products and data integrating models.  Blue numbers are estimates that have been 1648 

optimized by forcing water and energy budget closure and taking into account uncertainty in the 1649 

original estimates. 1650 
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 1652 
 1653 

Figure 2.  Optimized annual mean fluxes for North America (including Greenland), South 1654 

America, Africa, Eurasia, the Islands of Australasia and Indonesia, mainland Australia, and 1655 

Antarctica: precipitation (blue), evapotranspiration (red), runoff (green), and annual amplitude of 1656 

terrestrial water storage (yellow), in 1,000 km3/yr. The background image shows GRACE-based 1657 

amplitude (maximum minus minimum) of the annual cycle of terrestrial water storage (cm). 1658 

  1659 
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 1660 
 1661 

Figure 3.  Optimized mean annual cycles of precipitation (blue), evapotranspiration (red), runoff 1662 

(green), atmospheric convergence (orange), and month-to-month water storage change (yellow), 1663 

in mm/day, over the continents and global ocean, during roughly 2000-2010.  Linear 1664 
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interpolation is used between monthly values.  Shading indicates the uncertainty range.  Note the 1665 

y-axes are not uniform. 1666 

 1667 
 1668 
 1669 

 1670 
 1671 

Figure 4. Optimized mean annual cycles of precipitation, evaporation, and atmospheric 1672 

convergence, in mm/day, over the major ocean basins, during roughly 2000-2010.  Linear 1673 

interpolation is used between monthly values.  Shading indicates the uncertainty range. 1674 
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