The role of boundary layer clouds in the global energy and water cycle: An integrated assessment using satellite observations

Ralf Bennartz
University of Wisconsin – Madison
Outline

• Low clouds/light rain: What do we know? Why do we care?

• Creating a combined MODIS/AMSR dataset

• Regional studies

• Project timeline
Annual mean liquid water path from CMIP3 models

Lauer and Hamilton
Annual mean liquid water path from CMIP5 models

Lauer and Hamilton
• Balance of latent heat release, shortwave, and longwave radiative heating/cooling play dominant role in maintenance of these clouds

• Cloud albedo strongly affected via cloud-break-up/reorganization of cloud structures.

• Aerosols modify precipitation efficiency and albedo via changes in cloud droplet number concentration

• A-train observations can provide baseline for understanding these processes
Basic physical relations

\[LWP = f \cdot \rho_L \cdot \tau_{VIS} \cdot r_{eff} \]

\[N = C \cdot \tau_{VIS}^3 \cdot LWP^{-5/2} \]

- LWP from VIS/NIR: Factor f depends on stratification of cloud (e.g. f=5/9 for adiabatic, f=2/3 for vertically uniform)

- N for an adiabatic cloud related to optical depth and LWP. C depends weakly on temperature and width of droplet spectrum
Basic physical relations

\[LWP = f \cdot \rho_L \cdot \tau_{VIS} \cdot r_{\text{eff}} \]

\[N = C \cdot \tau_{VIS}^3 \cdot LWP^{-5/2} \]

\[\tau_{MW} = \sigma_L \cdot LWP + \sigma_R \cdot RWP \]

- LWP from VIS/NIR: Factor \(f \) depends on stratification of cloud (e.g. \(f=5/9 \) for adiabatic, \(f=2/3 \) for vertically uniform)

- N for an adiabatic cloud related to optical depth and LWP. \(C \) depends weakly on temperature and width of droplet spectrum

- MW: Very direct measurement. Mass absorption coefficient depends slightly on temperature, \(\sigma_r \) depends on rain water content too.
Basic physical relations

Bennartz et al. (2010)
Basic physical relations

\[\tau_{MW} = \sigma_L \cdot LWP + \sigma_R \cdot RWP \]

\[RWP = -\frac{aH_R}{2b} + \sqrt{\left(\frac{aH_R}{2b}\right)^2 + \frac{H_R}{b} \left(\tau_{MW} - \sigma_L \cdot LWP\right)} \]

Bennartz et al. (2010)
Basic physical relations

Three input variables \((T_{\text{VIS}} \ r_{\text{eff}} \ T_{\text{MW}})\) \\
\rightarrow \\
Three output variables \((N, \text{LWP}, \text{RWP})\)
Basic physical relations

Three input variables \((T_{\text{VIS}} \; r_{\text{eff}} \; T_{\text{MW}}) \)

\[\rightarrow \]

Three output variables \((N,LWP,RWP) \)

Auxiliary data, assumptions:

- Cloud top height
- Cloud top temperature
- Drizzle/rain particle size distribution
- Width of cloud droplet spectrum
Basic physical relations

- Direct physical relationship between MW/VNIR optical properties and cloud physical properties.
- Errors and uncertainties due to input and auxiliary parameters can be specified and dependencies can be explicitly spelled out.
- Validity of assumptions can be assessed from observations.
- No unknown unknowns (though a lot of known unknowns).
Bennartz et al. (2010), Bennartz (2007), Rausch et al. (2010)
Cloud droplet number concentration
Cloud droplet number concentration
Cloud droplet number concentration

(Bennartz et al. GRL, 2011)
Cloud droplet number concentration

(Bennartz, Fan, Rausch, Leung, Heidinger, GRL, 2011)
Plans for NEWS

• Ongoing/This meeting: Coordinate with other PIs.

• Ongoing: Case study selection; acquire datasets (MODIS C6)

• Uncertainty/error analysis; case studies

• Fall 2014: Peer reviewed publication.

• Fall 2014 Make dataset available to community.