An Algorithm for Estimating Precipitation Using Combined Radar-Radiometer Observations from GPM

Mircea Grecu, Lin Tian, Bill Olson, and Simone Tanelli
&
GPM Radar and Combined Algorithm Teams
GPM “Core” Launch: July 2013

Dual-wavelength Precipitation Radar (DPR)

freq: 13.6 GHz (Ku) and 35.5 GHz (Ka)

GPM Microwave Imager (GMI)

freq: 10.7, 18.7, 23.8, 36.5, 89.0, 165.5, 183±8, and 183±3 GHz

new GPM channels in cyan.
DPR/GMI Sampling and Resolution

DPR footprints

GMI footprints

DPR swath section

freq. 10.7, 18.7, 23.8, 36.5, 89.0, 165.5, 183.3±8, 183.3±3 GHz
resol. 26, 15, 12, 11, 6, 6, 6, 6 km
Algorithm Development Considerations

- Dual-wavelength radar will be used to estimate two parameters of the precipitation size distribution, if possible.

- Radiometer data will provide addnl. information regarding the environment (cloud water, water vapor) to further constrain estimates.

- Output to include uncertainties of precipitation estimates.

- Design should be modular, robust, computationally-efficient.
Ensemble Kalman Filtering Approach

- Assume a priori ensemble, x_i, of desired parameter, x.

X_i
Ensemble Kalman Filtering Approach

- Assume \textit{a priori} ensemble, x_i, of desired parameter, x.

- Use forward model $y = f(x)$ to simulate observable y_i for each x_i.
Ensemble Kalman Filtering Approach

- Assume *a priori* ensemble, x_i, of desired parameter, x.

- Use forward model $y = f(x)$ to simulate observable y_i for each x_i.

- Update x_i using y_{obs} and covariance σ_{xy} of x_i and y_i:

$$x_i' = x_i + \frac{\sigma_{xy}}{(\sigma_{yy} + \sigma_{noise}^2)} \cdot (y_{obs} - y_i)$$
 Ensemble Kalman Filtering Approach

- Assume *a priori* ensemble, x_i, of desired parameter, x.

- Use forward model $y = f(x)$ to simulate observable y_i for each x_i.

- Update x_i using y_{obs} and covariance σ_{xy} of x_i and y_i:

 $$x_i' = x_i + \frac{\sigma_{xy}}{\sigma_{yy} + \sigma_{noise}^2} \cdot (y_{obs} - y_i)$$

- Take mean of x_i (solution) and standard deviation of x_i (uncertainty).
Precip. size distribution:

\[n(D) = N_w f(\mu) \left(\frac{D}{D_o} \right)^n \exp \left(-\frac{3.67 + \mu}{D_o} D \right) \]
Algorithm Architecture

- Analysis of p, T, q, and CLW profiles
- DPR Z_{Ku} and Z_{Ka}

- Initial ensemble of q, CLW profiles; calc. atten. at Ku, Ka

- Recursively ensemble filter \textit{a priori} N_{W,D_o} using Z_{Ku,Ka}

- Ensemble filter N_{W,D_o} profiles using PIA_{Ku,Ka}

- SRT estimates of PIA_{Ku} and PIA_{Ka}

- Analysis of T_{sfc}, emissivities (U_{10})

- Save estimates and uncertainties

- Ensemble filter N_{W,D_o}, q, CLW profiles and emissivities using deconvolved TB_{GMI}

- Use DPR-resolution to constrain GMI TB deconvolution

- Simulate TB_{GMI} ensembles at DPR resolution

- Assign T_{sfc}, emissivity ensemble to DPR-derived profile ensembles

- Output is ensemble of N_{W,D_o}, q, CLW profiles and emissivities consistent with Z_{Ku,Ka}, PIA_{Ku,Ka}, and deconvolved GMI TB’s.
Assume q, CLW, μ, N_w profiles for each Ku-band profile; estimate D_o profile.

Create “true” precip. size distributions:

Simulate Z_{Ka}, $\text{PIA}_{Ku/Ka}$

and

TB at 10, 19, 37, 85 GHz, given T_{sfc}, and U_{10} (surface emissivity)
Liquid Water Content Estimates

Ensemble Kalman Filter estimates of LWC using different input:

- Ku band Only Estimates
- Ku + Ka band Estimates
- Ku + Ka band + Microwave Estimates
- “Truth”
Summary of Synthetic Data Test

LWC estimates

Bias (% of mean): -15.1% -5.2% -1.3%
RMSE (% of σ): 55% 45% 35%
Corr. Coef. .78 .85 .91
Synopsis

• “1-D” algorithm ready. Ensemble Kalman approach produces reasonable estimates & improvement with radiometer channels.

• Current work is on GMI deconvolution step, and construction of a priori ensembles to constrain estimated parameters.

• To optimize impact of new GPM channels, need to ensure physics & a priori assumptions are realistic. FC data & 1-D testing.

• Full satellite algorithm testing to start mid-2011.