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Abstract. Current changes in tropical precipitation from satellite data and climate

models are assessed. Wet and dry regions of the tropics are defined as the highest

30% and lowest 70% of monthly precipitation values. Observed tropical ocean trends

in the wet regime (1.8%/decade) and the dry regions (−2.6%/decade) for the Global

Precipitation Climatology Project (GPCP) over the period including Special Sensor

Microwave Imager (SSM/I) data (1988-2008) are of smaller magnitude than when

including the entire time-series (1979-2008) and in closer agreement with model

simulations than previous comparisons. Analysing changes in extreme precipitation

using daily data within the wet regions we find an increase in the frequency of the

heaviest 6% of events with warming for the SSM/I observations and model ensemble

mean. The SSM/I data indicates an increased frequency of the heaviest 0.2% of events

of approximately 60% per K warming. This is larger than expected from the Clausius

Clapeyron response and at the upper limit of the model simulations which display a

substantial range in responses.

1. Introduction

Substantial changes in the global water cycle are an expected consequence of a warming

climate; this is based upon understanding of the governing physical processes and

projections made by sophisticated models of the Earth’s climate system (Allen &

Ingram 2002). Monitoring changes in tropical precipitation is a vital step toward

building confidence in regional and large-scale climate predictions and the associated

impacts on society (Meehl et al. 2007).

A number of robust large-scale responses of the hydrological cycle have been

identified in models (Held & Soden 2006), relating primarily to increases in low-level

moisture with temperature, a consequence of the Clausius-Clapeyron equation. Moisture

increases are also thought to lead to the intensification of extreme precipitation (Pall

et al. 2007), though sensitivity to model-dependent changes in vertical motion is evident

(O’Gorman & Schneider 2009, Gastineau & Soden 2009). Projected rises in global

mean precipitation are constrained by radiative-convective balance (e.g. Lambert &
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Webb 2008) and increase more slowly than atmospheric moisture. Consequences of

increased low-level moisture, enhanced horizontal moisture fluxes and the contrasting

changes in mean and extreme precipitation include reductions in the strength of the

Walker circulation (Vecchi et al. 2006) and an amplification of global precipitation

minus evaporation patterns (Held & Soden 2006), with wet regions becoming wetter

at the expense of dry regions (Chou et al. 2007); many of these anticipated responses

have been known about for some time (Mitchell et al. 1987).

Improving confidence in climate projections demands the use of observations,

sampling the many aspects of the global energy and water cycles, to evaluate the relevant

processes simulated by models. It is important to establish causes of disagreement, for

example relating to observing system deficiencies or inadequate representation of forcing

and feedback processes in models. There is observational evidence of increased tropical

monthly-average moisture and precipitation (Wentz et al. 2007) and an amplification

of extreme precipitation events in response to atmospheric warming (Lenderink & van

Meijgaard 2008, Allan & Soden 2008) as well as a contrasting precipitation response

over wet and dry regions of the tropics (Zhang et al. 2007, Allan & Soden 2007, Chou

et al. 2007). While observed precipitation responses appear larger than those simulated

by models (Zhang et al. 2007, Wentz et al. 2007, Allan & Soden 2008) it is unclear

whether this relates to model deficiency, inadequacy in the observing system or is a

statistical artifact of the relatively short satellite record (Liepert & Previdi 2009). The

aim of the present work is to identify physically understandable, robust responses of

tropical precipitation and highlight discrepancies relating to limitations of the observing

system or the model simulations. We update and extend analysis of current changes in

tropical precipitation and its extremes, addressing the questions: (1) What are current

trends in tropical mean precipitation? (2) Are the wet regions becoming wetter at the

expense of the dry regions? (3) Is there an intensification in extreme precipitation with

warming in models and observations over the period 1979-2008?

2. Current changes in tropical precipitation

Increases in tropical (30◦S-30◦N) precipitation since 1979 have been detected using

observational datasets (Wentz et al. 2007, Adler et al. 2008), in particular for the

oceans and over ascending branches of the large-scale circulation (Allan & Soden 2007).

The observed responses appear more pronounced than simulations made using coupled

atmosphere-ocean climate models with realistic radiative forcings from the phase 3

of the Coupled Model Inter-comparison Project (CMIP3) and also atmosphere-only

experiments (AMIP3) forced with observed sea surface temperature (SST) and sea ice

(Wentz et al. 2007, Allan & Soden 2007) although the results are highly sensitive to the

time period and dataset used (John et al. 2009, Liepert & Previdi 2009).

A critical issue with regard to observing current changes in precipitation is the

limitations in the satellite datasets. The Global Precipitation Climatology Project

(GPCP; Adler et al. 2008) incorporates a blend of satellite infra-red radiances and
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Figure 1. Precipitation anomalies (2-year averages) relative to the mean for the

1989-1999 period over (a) ascending and (b) descending branches of the tropical

circulation for CMIP3 coupled atmosphere-ocean models and versions 2.0 and 2.1

GPCP observations applying NCEP or ERA Interim reanalysis vertical motion fields.

Updated from Allan & Soden (2007).

predominantly land-based rain gauges since 1979 with microwave ocean measurments

from the Special Sensor Microwave Imager (SSM/I) since 1988. In addition to GPCP

we also consider the SSM/I-only ocean product (version 6) developed by Wentz et al.

(2007) using the satellite series: F08 (1987-1991), F11(1992-1999) and F13 (2000-

2008). It is important to note the different sources that contribute to precipitation

estimation over land and ocean. In addition, changes in the coverage and calibration

issues limit the accuracy in these datasets, in particular for identifying decadal changes.

Also critical are the known differences between the satellite datasets and model

simulations in representing the probability distribution of precipitation events (Wilcox

& Donner 2007, Field & Shutts 2009). While limitations apply both to the models and

observations, it is of considerable value to identify physically understandable, robust

responses of the tropical water cycle.

2.1. Ascending and Descending Regimes

Fig. 1 shows precipitation anomalies in ascending and descending branches of the

tropical circulation, using 500 hPa vertical motion fields from atmospheric reanalyses

to sub-sample the observed precipitation and model vertical motion to sample model

precipitation. The comparison is identical to Allan & Soden (2007) but also displays an

updated version (v2.1) of the GPCP dataset and also uses European Centre for Medium-

range Weather Forecast (ECMWF) Interim reanalysis (ERA Interim) data, based upon

Uppala et al. (2005), in place of National Center for Environmental Prediction reanalysis

1 (NCEP; Kalnay et al. 1996). The update from GPCP version 2.0 to 2.1 does not

alter trends substantially. However, using ERA Interim data reduces the magnitudes of

trends, in closer agreement with the models. We propose that the NCEP reanalysis is



Current changes in tropical precipitation 4

particularly sensitive to improved representation of vertical motion, with reduced mis-

classification of GPCP precipitation events in descent regions over time, that may appear

to enhance precipitation trends. Regardless, the sensitivity of precipitation trends to

reanalysis vertical motion fields motivate an alternative approach.

2.2. Wet and Dry Regimes

To avoid the use of reanalysis fields, instead percentile bins of precipitation were used

to define the wettest and driest regions. Monthly precipitation values were sorted by

intensity, including dry grid-points. Mean precipitation was calculated for the the driest

50% of grid boxes and subsequently for each 10% bin ranging from 50-60% up to the

wettest 10% of grid-boxes. Monthly area-weighted means were computed over each bin

for the GPCP v2.1 data (1979-2008) and also for “run1” of all AMIP3 models which

spanned the entire period 1979-2001: CNRM-CM3, GISS-E-R, INMCM3, IPSL-CM4,

MIROC3.2-hires, MIROC3.2-medres, MRI-CGCM2-3.2a, NCAR-CCSM3, HadGEM1

(obtained from www-pcmdi.llnl.gov) and a model ensemble mean. The resulting time-

series were deseasonalized to reduce the influence of the large changes in solar forcing

and associated circulation shifts that may not be a good surrogate for climate change.

Circulation changes are also associated with El Niño although sampling wet or dry

regimes will reduce the impact of these changes somewhat. Precipitation trends were

calculated using linear least-squares fits. Essentially we seek to quantify the statistical

distribution of tropical precipitation and its linear change with time.

Figure 2 shows trends and associated correlation (r) for each percentile bin for

the GPCP data, considering the entire period and the 1988-2008 period, which included

SSM/I ocean data. Also shown are trends for the model ensemble mean and range for the

9 individual models (grey shading); the ensemble mean correlation coefficient does not lie

entirely within the inter-model spread since forming an ensemble can increase correlation

as the random unforced component of variability is reduced. Trend magnitudes for

GPCP are reduced when excluding the pre-SSM/I period (1979-1987) from the analysis,

in closer agreement with the model results. Caution in using pre-1988 GPCP data has

been expressed previously (e.g. Adler et al. 2008) due to issues with inter-calibration

of the infra-red satellite radiances and homogeneity associated with changes from infra-

red-only to combined infra-red and microwave ocean precipitation retrievals.

Fig. 2 shows a clear partition between positive trends above the 60-70th percentile

and negative trends below these percentiles for the GPCP and model data. Pall et al.

(2007) found this partition to be sensitive to the latitude chosen, being closer to the

90th percentile for the global mean, although they considered daily model data at

approximately 2.7 times CO2 levels relative to a control. Guided by Fig. 2, wet and dry

regions of the tropics were defined as the driest 70% and wettest 30% of grid-boxes for

each model and satellite dataset. Time series were calculated for these regimes over the

entire tropics and for land and ocean regions separately.

Figure 3 displays deseasonalized tropical ocean anomalies of SST (HadISST; Rayner
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Figure 2. (a) Linear trends in precipitation with time (dP/dt in %/decade) and

(b) associated correlation coefficient, r, with percentile bins of tropical monthly

precipitation for GPCP data, AMIP3 model ensemble mean and the range for

individual models (grey shading).

et al. 2003) and precipitation and the wet and dry region precipitation time series for

models, GPCP and SSM/I. Linear trends and correlation between precipitation and

SST are presented in Table 1; a two-tailed t-test, allowing for autocorrelation (Yang &

Tung 1998), was employed to detect significant correlation at the 95% confidence level.

Positive precipitation anomalies coincide with warm El Niño years in the models and

observations, attributable to the wet tropical region response (Fig. 3c). This relationship

is statistically significant with mean precipitation anomalies for GPCP and the model

ensemble mean increasing at around 6-10%K−1 depending upon the time period, close to

the Clausius-Clapeyron rate, with a spread across the models of 2.9-11%K−1 (Table 1).

The SSM/I data show a response around twice as large as for GPCP.

Over the tropical oceans, positive precipitation trends are apparent for the wet

region (Fig. 3c) and negative trends in the dry regions (Fig. 3d), consistent with Allan

& Soden (2007), despite a differing methodology. Observed wet region trends range

from 1.8-3.0%/decade, overlapping with the upper range of the inter-model spread.

The model ensemble trend is also positive, but smaller (1%/decade).

Negative trends in the dry regions for GPCP data are more than halved when

excluding the pre-SSM/I period. GPCP anomalies are substantially more positive than

model anomalies during 1981-82 and 1984-86, and further analysis is required to assess
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Figure 3. Anomalies of (a) sea surface temperature (SST) and (b) precipitation (P),

partitioned into (c) wet and (d) dry regions of the tropical oceans for observations and

models (grey shading denotes ±1 standard deviation).

the accuracy of GPCP data during these periods (Adler et al. 2008). Nevertheless,

GPCP ocean trends for the 1988-2008 period are twice the model ensemble mean trends

for the 1979-2001 period despite similar observed SST trends for the two periods (0.06

and 0.08 K/decade respectively). SSM/I data do not show a statistically significant

trend, partly due to positive anomalies since 2000, at odds with the GPCP data.

This coincides with the switch between F11 and F13 satellites in the record and may

therefore be an inter-calibration issue. Trends over tropical land regions are generally

not statistically significant apart from GPCP for the wet regions over the period 1988-

2008.

For wet regions over the entire tropics, there is a positive trend of 1.9% per decade

for 1988-2008 GPCP data, around double the model ensemble mean trend for 1979-2001.

For the NCEP tropical surface temperature trend over 1988-2008 (0.12 K/decade) this

corresponds to a sensitivity of 16%/K for GPCP, above that expected from Clausius-
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Table 1. Linear trends in precipitation (P ) and regression with sea surface

temperature (SST) for models and observations over tropical land and ocean for wet

and dry regimes. * denotes significant correlation at the 95% confidence interval.

Dataset Period Tropics Tropical Wet Tropical Dry

Interannual relationships: dP/dSST (%/K), Ocean

GPCP v2.1 1979-2008 6.4±1.4∗ 15.5±1.7∗ −20.3±3.2∗

GPCP v2.1 1988-2008 9.8±1.8∗ 13.3±2.1∗ −2.3±3.6

SSM/I v6 1988-2008 21.6±2.5∗ 23.1±2.7∗ 6.1±6.8

Models (range) 1979-2000 7.7±0.5∗ (+2.9-+11) 10.1±1∗ (+5.6-+14) 1.8±1.3 (−5.3-+10)

Trends: dP/dt (%/decade), Land+Ocean

GPCP v2.1 1979-2008 0.5±0.2 2.2±0.2∗ −4.7±0.4∗

GPCP v2.1 1988-2008 1.0±0.3∗ 1.9±0.4∗ −2.1±0.7

Models (range) 1979-2000 0.4±0.1∗ (−0.4-+0.7) 0.9±0.1∗ (−0.0-+1.4) −0.9±0.3 (−2.2-+0.1)

Ocean

GPCP v2.1 1979-2008 0.5±0.3 2.8±0.3∗ −5.9±0.5∗

GPCP v2.1 1988-2008 0.7±0.4 1.8±0.5∗ −2.6±0.8∗

SSM/I v6 1988-2008 2.8±0.7∗ 3.0±0.7∗ 2.6±1.6

Models (range) 1979-2000 0.3±0.2 (−0.8-+1.1) 1.0±0.3 (−0.4-+1.8) −1.3±0.3∗ (−2.0-−0.7)

Land

GPCP v2.1 1979-2008 0.5±0.4 0.7±0.3 −0.6±0.7

GPCP v2.1 1988-2008 1.7±0.6 2.2±0.6∗ −0.6±1.3

Models (range) 1979-2000 0.7±0.4 (−1.0-+2.1) 0.5±0.3 (−0.9-+1.6) 1.0±0.7 (−1.9-+3.8)

Clapeyron. It is not clear if this super-Clausius Clapeyron response, also noted elsewhere

(Lenderink & van Meijgaard 2008, Liu et al. 2009) has a physical explanation or whether

it is a statistical artefact of the limited observational record (Liepert & Previdi 2009);

this is discussed further in Section 4.

3. Precipitation Extremes in the Tropical Ocean Wet Region

We now examine in more detail the wet region precipitation response, using daily

data from SSM/I and the models. SSM/I 0.25x0.25◦ data were averaged to a 1×1◦

grid where at least 50% of grid-point data were valid. Ascending and descending

satellite over-passes were combined to provide daily estimates. A 2.5×2.5◦ product

was generated using bi-linear interpolation, consistent with the climate models which

were also interpolated to this common grid.

Allan & Soden (2008) excluded dry grid boxes from analysis of daily rainfall

intensity. Since ∼70% of the SSM/I grid-boxes were found to be dry while in some

models all grid boxes contained at least light rainfall, this potentially causes a substantial

sampling disparity. Therefore in the present analysis we consider the wettest 20% of all

tropical ocean values, including dry grid-boxes, in the models and SSM/I data.

The method of Allan & Soden (2008) was applied to calculate monthly percentage

anomalies in the frequency of rainfall events in each bin, the bin boundaries calculated for
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one year of data from 1990. Each time-series is deseasonalized with respect to the mean

frequency for each month. This is conducted separately for each SSM/I satellite (F08,

F11, F13) to avoid satellite inter-calibration issues and to concentrate on interannual

anomalies. Results are not substantially altered when considering all satellites as a single

record. The calculations are applied to each model (listed in Fig. 4f) separately and

averaged to create an ensemble mean (Fig.4c). Also included is a Clausius-Clapeyron

experiment where 12 months of SSM/I daily precipitation data for 1990 were perturbed

by 7% per K anomaly in observed local SST (HadISST).

There is a correspondence between warm El Niño years (Fig. 4a) and a greater

frequency of the heaviest rain (wettest 6% of events) in the observations (b) and

the model ensemble mean (c). This relationship is partially explained by the simple

Clausius-Clapeyron scaling calculated in Fig. 4d. However, details of the variation differ

between the models and observations: there is a strong anti-correlation (r = −0.78)

between the frequency of 98-100th percentile and 80-86th percentile rainfall in the

models, consistent with (Pall et al. 2007), while the observed relationship is more

complex.

In agreement with Allan & Soden (2008), the observed response of intense rainfall

frequency to warming is 2-3 times larger than the model ensemble mean sensitivity and

the response expected from Clausius Clapeyron (Fig. 4e). The model spread for the most

intense rainfall bin is substantial (Fig. 4f), ranging from negative to strongly positive,

as noted recently (O’Gorman & Schneider 2009, Gastineau & Soden 2009). Specifically,

the CNRM, INMCM, IPSL and MIROC models analysed in the present study appear

to capture the observed response of around a 60% increase in the frequency of the

wettest 0.2% of events per K warming, while the remaining models do not. Turner

& Slingo (2009) found that coupled models (CMIP3) using variants of the Arawaka-

Schubert convective parametrization (e.g. CGCM, GFDL, MIROC) tend to produce

super-thermodynamic responses of precipitation intensity to warming over India at the

time of CO2 doubling; this is not apparent from the AMIP3 simulations considered in

the present study.

Using the SSM/I daily precipitation, it is also interesting to ask, how much of

the tropical ocean rainfall variability in Fig. 3b is determined by the heaviest daily

rainfall events? To address this, we first verified that re-calculate monthly rainfall

from the daily data reproduced the monthly products. Linear fits were calculated

between the reconstructed monthly precipitation anomalies (P ) and perturbed

anomalies (Pz) constructed by setting precipitation to zero below each percentile

theshold, z. The resulting relationship, Pz>94%=0.96P (r = 0.99), demonstrates the

dominance of the heaviest rainfall events measured by SSM/I in determining monthly

precipitation variation. Rainfall events above the 99th percentile yield the relationship,

Pz>99%=0.66P , suggesting that the heaviest 1% of rainfall events contribute to around

one third of the tropical ocean precipitation anomalies in the SSM/I data.
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Figure 4. Interannual anomalies (smoothed by ±2 months) of (a) observed SST

(HadISST) and the frequency of daily rainfall in percentile bins of intensity (P%) for

(b) SSM/I, (c) model ensemble mean and (d) Clausius-Clapeyron estimates based upon

SSM/I data for 1990 perturbed by 7% per K observed local SST anomaly. The linear

sensitivity of frequency of rainfall intensity to SST change is shown for (e) SSM/I

and HadISST, the model ensemble mean and the Clausius-Clapeyron experiment and

(f) individual models. In e, standard error bars for the linear fit are plotted where

correlation is significant; ± 2 standard deviations are plotted for the model data to

denote the model spread.
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4. Conclusions

Tropical precipitation variation is quantified for observations and climate model

simulations over the period 1979-2008. The wettest 30% of grid-points and the remaining

driest regions are sampled separately. Increased precipitation coincides with warm

months associated with El Niño. This is attributable to the wet regions of the tropical

ocean with observed precipitation increasing at the rate 13.3-15.5 %/K for GPCP data,

at the higher end of the model range (5.6-14.0%/K) but lower than SSM/I-only data

(23.1%/K). In the SSM/I data, essentially all of the variability in mean tropical ocean

precipitation is explained by daily rainfall events above the 94th percentile.

Positive trends in wet regions of the tropical ocean for GPCP are reduced from

2.8%/decade for 1979-2008 to 1.8%/decade for the 1988-2008 SSM/I period, at the

upper end of the model range but smaller than SSM/I-only trends. Negative trends in

the dry regions of the tropical ocean are detected for the GPCP data and the models.

Again GPCP trend magnitudes are reduced when considering the SSM/I period but

are still double the model ensemble mean trend of -1.3%/decade. Discrepancy between

observed dry-region anomalies since 2000 appears to relate to inhomogeneity of the

SSM/I time series. Variation in GPCP precipitation prior to the SSM/I period is also

questionable (Adler et al. 2008) and trends over tropical land are not coherent amongst

datasets.

Analysing daily precipitation from SSM/I and model simulations for the wettest

20% of ocean grid-boxes demonstrates a clear increase in the frequency of the heaviest

rainfall events with warming, consistent with previous analysis (Allan & Soden 2008).

The observed frequency of the heaviest 0.2% of rainfall events (including dry grid-points)

rises by about 60% per K of warming. This rise is faster than expected from Clausius-

Clapeyron, a result also suggested by Lenderink & van Meijgaard (2008) although their

analysis may be sensitive to the transition from large-scale to convective rainfall in

hourly data (Haerter & Berg 2009). A super-thermodynamic response is also at odds

with climate change scalings described by O’Gorman & Schneider (2009). Although

the effect of large spatial reorganisation of circulation systems associated with El Niño

are reduced by considering wet regimes, it has yet to be demonstrated that interannual

variability is a realistic surrogate for climate change.

Some of the model simulations display a relationship between precipitation extremes

and warming that is close to the observations although there is a large spread; previous

work has noted the substantial sensitivity of tropical precipitation to changes in vertical

motion within such events (Gastineau & Soden 2009, O’Gorman & Schneider 2009),

likely to relate to differences in model parametrizations. With improved homogeneity

of the satellite data it will be informative to analyse trends in precipitation extremes

with warming.

In summary, positive trends in the wet regions and negative trends in the

dry regions of the tropics are consistent with but smaller than previous analysis

(Allan & Soden 2007) and closer to model simulations. The sensitivity of the
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observed results to the time-period and region chosen and the dataset employed shows

the need for further improvements in the inter-calibration and homogenisation of

datasets and continued inter-comparisons of different products, for example from the

Tropical Rainfall Measurement Mission (John et al. 2009). Finally, a good physical

understanding of the relationships between energy entering and stored in the climate

system and the global water cycle are vital in predicting and planning for global change

(Trenberth 2009, Stephens & Ellis 2008, Wild et al. 2008).
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